首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:探讨替米沙坦及吡哆胺对自发性高血压大鼠脑组织氧化应激的影响。方法:自发性高血压大鼠24只随机分为4组(n=6):高血压对照组(HC组);替米沙坦组(T组);吡哆胺组(P组);联合治疗组(TP组)。同龄WKY大鼠作为正常对照组(NC组)。药物干预16周,测定各组脑组织中丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶p47phox mRNA表达。结果:与NC组比较,HC组脑组织中MDA含量明显升高、SOD活性明显减低(P<0.05);与HC组比较T组、P组、TP组MDA含量明显减低,SOD活性明显升高(P<0.05);与NC组比较HC组(NADPH)氧化酶p47phox mRNA表达显著上调(P<0.01);与HC组比较T组、TP组NADPH氧化酶p47phox mRNA表达明显下调(P<0.01);HC组与P组比较NADPH氧化酶p47phox mRNA表达无统计学差异(P>0.05)。结论:自发性高血压大鼠脑组织处于氧化应激状态,替米沙坦及吡哆胺可抑制自发性高血压大鼠脑组织的氧化应激水平,联合治疗并不优于替米沙坦单药治疗。  相似文献   

2.
Acute ischemic and brain injury is triggered by excitotoxic elevation of intraneuronal Ca2+ followed by reoxygenation-dependent oxidative stress, metabolic failure, and cell death. Studies performed in vitro with neurons exposed to excitotoxic concentrations of glutamate demonstrate an initial rise in cytosolic [Ca2+], followed by a reduction to a normal, albeit slightly elevated concentration. This reduction in cytosolic [Ca2+] is due partially to active, respiration-dependent mitochondrial Ca2+ sequestration. Within minutes to an hour following the initial Ca2+ transient, most neurons undergo delayed Ca2+ deregulation characterized by a dramatic rise in cytosolic Ca2+. This prelethal secondary rise in Ca2+ is due to influx across the plasma membrane but is dependent on the initial mitochondrial Ca2+ uptake and associated oxidative stress. Mitochondrial Ca2+ uptake can stimulate the net production of reactive oxygen species (ROS) through activation of the membrane permeability transition, release of cytochrome c, respiratory inhibition, release of pyridine nucleotides, and loss of intramitochondrial glutathione necessary for detoxification of peroxides. Targets of mitochondrially derived ROS may include plasma membrane Ca2+ channels that mediate excitotoxic delayed Ca2+ deregulation.  相似文献   

3.
This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.  相似文献   

4.
Reactive oxygen species and lipid peroxidation play a role in the pathogenesis induced by the non-steroidal anti-inflammatory drug indomethacin. Melatonin (MLT) protection against indomethacin-induced oxidative tissue injury was investigated in gastric mucosa and testis of rats. MLT was administered intragastrically (i.g.) 30 min before the administration to fasted rats of 20 mg indomethacin/kg rat given i.g.. The area of gastric lesion as well as thiobarbituric acid reactive substances (TBARS) and lactate dehydrogenase (LDH) activity were found to be significantly increased 4 h after administration of indomethacin in rat gastric mucosa and testis indicating acute oxidative injury. MLT pretreatment reduced gastric lesion area to 80% of the indomethacin-treated rats and reduced the rise in TBARS concentration. MLT treatment reduced the LDH activity increase in testis but not in gastric mucosa. In indomethacin-treated rats, both the cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) and mitochondrial Mn-SOD activities were significantly diminished in gastric mucosa as well as the total SOD activity in testis. In addition, glutathione (GSH) content in both tissues was markedly decreased following indomethacin treatment. Pretreatment with MLT significantly ameliorated both the inhibition of SOD activity and the decreased GSH content in both tissues. Thus, these results show the effective antiperoxidative and preventive actions of MLT against indomethacin-induced gastric mucosal damage and testicular oxidative injury and we propose that this action might be relevant for its use with other free radical generating drugs.  相似文献   

5.
The purpose of this study was to investigate the oxidative status in experimental hypothyroidism and the antioxidant effect of taurine supplementation. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + taurine; group 3, propylthiouracil (PTU); group 4, PTU + taurine). Hypothyroidism was induced by giving 0.05% PTU in drinking water for 8 weeks. Taurine was supplemented in drinking water at a concentration of 1% for 5 weeks. Plasma (p < 0.05), red blood cell (p < 0.01), liver (p < 0.001) and kidney tissue (p > 0.05) malondialdehyde levels were increased in the PTU group compared with those of the control rats and were decreased in the PTU + taurine group compared with the PTU alone group. No significant changes were observed in glutathione levels of kidney and liver in the PTU group, but taurine supplementation significantly increased the glutathione levels of these tissues. Paraoxonase and arylesterase activities were decreased in the PTU group while taurine supplementation caused no significant changes in paraoxonase and arylesterase activities. These findings suggest that taurine supplementation may play a protective role against the increased oxidative stress resulting from hypothyroidism.  相似文献   

6.
In a recently published article in “Amino Acids” it was shown that obstructive jaundice of 9 days’ duration in rats induces significant alterations of polyamines’ metabolism in the brain, which might play an important pathogenetic role in cholestatic brain injury. The authors proposed that alterations of polyamines in cholestatic brain might induce neuronal toxicity through a mechanism that implicates the production of reactive oxygen species and oxidative stress, although this parameter was not evaluated in their study. This hypothesis is supported by our recent findings on brain oxidative status in rats with obstructive jaundice of 10 days’ duration. Potential interrelations of the two studies’ findings are discussed in this commentary.  相似文献   

7.
Stress is one of the basic factors in the etiology of number of diseases. The present study was aimed to investigate the effect of Triphala (Terminalia chebula, Terminalia belerica and Emblica officinalis) on noise-stress induced alterations in the antioxidant status and on the cell-mediated immune response in Wistar strain male albino rats. Noise-stress employed in this study was 100 dB for 4 h/d/15 days and Triphala was used at a dose of 1 g/kg/b.w/48 days. Eight different groups of rats namely, non-immunized: control, Triphala, noise-stress, Triphala with noise-stress, and corresponding immunized groups were used. Sheep red blood cells (5×109 cells/ml) were used to immunize the animals. Biochemical indicators of oxidative stress namely lipid peroxidation, antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), ascorbic acid in plasma and tissues (thymus and spleen) and SOD, GPx and corticosterone level in plasma were estimated. Cell-mediated immune response namely foot pad thickness (FPT) and leukocyte migration inhibition (LMI) test were performed only in immunized groups. Results showed that noise-stress significantly increased the lipid peroxidation and corticosterone level with concomitant depletion of antioxidants in plasma and tissues of both non-immunized and immunized rats. Noise-stress significantly suppressed the cell-mediated immune response by decreased FPT with an enhanced LMI test. The supplementation with Triphala prevents the noise-stress induced changes in the antioxidant as well as cell-mediated immune response in rats. This study concludes that Triphala restores the noise-stress induced changes may be due to its antioxidant properties.  相似文献   

8.
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.  相似文献   

9.
The effects of oxidative stress (OS) on the pharmacokinetics of fluvoxamine (FLV), particularly on FLV distribution in the plasma, were studied in ferric-nitrilotriacetate-induced OS rat models (OS rats). The study protocol involved a continuous FLV infusion (25.0 μg/kg/min). The resulting mean plasma FLV concentration measured in steady state OS rats was 0.13?±?0.01 μg/mL, which was significantly lower than plasma concentrations measured in control rats (0.19?±?0.01 μg/mL). Moreover, the mean FLV concentration in the OS rat brain (0.51?±?0.08 μg/g) was determined to be approximately half the concentration in control rat brains (0.95?±?0.11 μg/g). The FLV concentrations in both the unbound fraction of plasma and erythrocytes of OS rats were significantly greater than that of control rats. These results suggest the potential attenuation of FLV's pharmacological effects in patients under OS.  相似文献   

10.
《Free radical research》2013,47(7):831-841
Abstract

The effects of oxidative stress (OS) on the pharmacokinetics of fluvoxamine (FLV), particularly on FLV distribution in the plasma, were studied in ferric-nitrilotriacetate-induced OS rat models (OS rats). The study protocol involved a continuous FLV infusion (25.0 μg/kg/min). The resulting mean plasma FLV concentration measured in steady state OS rats was 0.13?±?0.01 μg/mL, which was significantly lower than plasma concentrations measured in control rats (0.19?±?0.01 μg/mL). Moreover, the mean FLV concentration in the OS rat brain (0.51?±?0.08 μg/g) was determined to be approximately half the concentration in control rat brains (0.95?±?0.11 μg/g). The FLV concentrations in both the unbound fraction of plasma and erythrocytes of OS rats were significantly greater than that of control rats. These results suggest the potential attenuation of FLV's pharmacological effects in patients under OS.  相似文献   

11.
Hypothermia, as well as anesthesia, are known to protect the brain against ischemia, hypoxia and other pathological damages. One of the mechanisms of this improvement could be by lowering brain function, and thereby lowering oxygen demand. We examined the effect of hypothermia on brain function and blood supply in awake and anesthetized rats and studied the interaction between partial ischemia and the responses to hypothermia. The brain function multiprobe (BFM) used enabled simultaneous measurements of cerebral blood flow (CBF), mitochondrial NADH redox state, extracellular K(+) concentration, DC potential and ECoG from the cerebral cortex in rats whose brain temperature was lowered by 5 degrees C. Hypothermia was induced in awake, anesthetized and brain ischemic-anesthetized rats. In anesthetized and ischemic-anesthetized rats, the time required for lowering the brain temperature by 5 degrees C was five times less than in the normal awake animals. No significant changes in CBF and NADH levels were found in response to hypothermia in the awake animals. In contrast, a significant decrease in extracellular K(+) concentration was recorded under hypothermia, probably due to the lower rate of depolarization. Hypothermia in anesthetized and in ischemic-anesthetized rats did not significantly affect the levels of mitochondrial NADH, CBF and extracellular K(+). Hypothermia under ischemia was expected to be more effective.  相似文献   

12.
Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress.Main methods: Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.  相似文献   

13.
目的:探讨牛磺酸(Tau)预处理对弥漫性脑创伤(TBI)大鼠脑皮层超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量、脑含水量(BWC)和脑皮层水孔通道蛋白4(AQP4)表达的影响。方法:复制大鼠TBI模型,分为假手术组(S组)、TBI组(T组)、低剂量Tau组(L组)和高剂量Tau组(H组),用比色法测定脑皮层匀浆液中SOD活力和MDA含量;干/湿法测定BWC;免疫组织化学检测脑皮层AQP4的表达。结果:T组大鼠脑皮层SOD活力显著低于S组,T组MDA含量、BWC和脑皮层AQP4的表达显著高于S组;H、L组脑皮层SOD活力显著高于T组,H、L组MDA含量、BWC和脑皮层AQP4的表达显著低于T组;H、L组之间差异无显著性。结论:Tau可能通过清除TBI后产生的的氧自由基、下调TBI大鼠脑皮层AQP4的表达减轻脑水肿,发挥其脑保护作用。  相似文献   

14.
目的研究普罗布考(Probucol)对糖尿病大鼠肾组织氧化应激的影响。方法采用腹腔注射链脲佐菌素(STZ)建立糖尿病大鼠模型。30只Wistar大鼠分为正常对照组(NC)、糖尿病组(DM)、糖尿病普罗布考治疗组(DP)。8周末称取体重、肾重、计算肾肥大指数(肾重/体重),检测尿白蛋白排泄率(UAER);测定各组生化指标包括血糖(BG)、胆固醇(TC)、三酰甘油(TG)、血清肌酐(SCr)、血尿素氮(BUN);检测肾组织中丙二醛(MDA)的含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)与谷胱甘肽过氧化物酶(GSH-Px)活性;肾组织切片行PAS染色分析肾小球面积及肾小球体积。结果 DM组大鼠肾重、肾重/体重、UAER、TC、TG、SCr、BUN、肾小球面积、肾小球体积较NC组均明显增加,DP组上述改变较DM组均明显减轻(P〈0.05)。DP组肾组织中MDA含量明显低于DM组,SOD、CAT、GSH-Px活性明显高于DM组(P〈0.05)。结论普罗布考可能部分通过减轻肾组织氧化应激反应实现对糖尿病大鼠肾脏的保护作用。  相似文献   

15.
The increasing use of mobile telephones raises the question of possible adverse effects of the electromagnetic fields (EMF) that these phones produce. In this study, we examined the oxidative stress in the brain tissue and serum of rats that resulted from exposure to a 900-MHz EMF at a whole body average specific absorption rate (SAR) of 1.08 W/kg for 1 h/day for 3 weeks. We also examined the antioxidant effect of garlic powder (500 mg/kg/day) given orally to EMF-exposed rats. We found that malondialdehyde (MDA) (p < 0.001) and advanced oxidation protein product (AOPP) (p < 0.05) increased in rat brain tissue exposed to the EMF and that garlic reduced these effects (p < 0.05). There was no significant difference in the nitric oxide (NO) levels in the brain. Paraoxonase (PON) was not detected in the brain. There was a significant increase in the levels of NO (p < 0.001) detected in the serum after EMF exposure, and garlic intake did not affect this increase in NO. Our results suggest that there is a significant increase in brain lipid and protein oxidation after electromagnetic radiation (EMR) exposure and that garlic has a protective effect against this oxidative stress.  相似文献   

16.
Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.  相似文献   

17.
This study was to explore whether repeated non-invasive limb ischemic pre-conditioning (NLIP) can confer an equivalent cardioprotection against myocardial ischemia-reperfusion (I/R) injury in acute diabetic rats to the extent of conventional myocardial ischemic pre-conditioning (MIP) and whether or not the delayed protection of NLIP is mediated by reducing myocardial oxidative stress after ischemia-reperfusion. Streptozotocin-induced diabetic rats were randomized to four groups: Sham group, the I/R group, the MIP group and the NLIP group. Compared with the I/R group, both the NLIP and MIP groups showed an amelioration of ventricular arrhythmia, reduced myocardial infarct size, increased activities of total superoxide dismutase (SOD), manganese-SOD and glutathione peroxidase, increased expression of manganese-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration (All p < 0.05 vs I/R group). It is concluded that non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats.  相似文献   

18.
19.
20.
This study evaluated the effect of possible synergic interaction between high fat diet (HF) and hydrochlorothiazide (HCTZ) on biochemical parameters of oxidative stress in brain. Rats were fed for 16 weeks with a control diet or with an HF, both supplemented with different doses of HCTZ (0.4, 1.0, and 4.0 g kg−1 of diet). HF associated with HCTZ caused a significant increase in lipid peroxidation and blood glucose levels. In addition, HF ingestion was associated with an increase in cerebral lipid peroxidation, vitamin C and non‐protein thiol groups (NPSH) levels. There was an increase in vitamin C as well as NPSH levels in HCTZ (1.0 and 4.0 g kg−1 of diet) and HF plus HCTZ groups. Na+–K+‐ATPase activity of HCTZ (4.0 g kg−1 of diet) and HCTZ plus HF‐fed animals was significantly inhibited. Our data indicate that chronic intake of a high dose of HCTZ (4 g kg−1 of diet) or HF change biochemical indexes of oxidative stress in rat brain. Furthermore, high‐fat diets consumption and HCTZ treatment have interactive effects on brain, showing that a long‐term intake of high‐fat diets can aggravate the toxicity of HCTZ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号