首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Although the origin and domestication process of foxtail millet (Setaria italica subsp. italica (L.) P. Beauv.) has been studied by several groups, the issue is still ambiguous. It is essential to resolve this issue by studying a large number of accessions with sufficient markers covering the entire genome. Genetic structures were analyzed by transposon display (TD) using 425 accessions of foxtail millet and 12 of the wild ancestor green foxtail (Setaria italica subsp. viridis (L.) P. Beauv.). We used three recently active transposons (TSI-1, TSI-7, and TSI-10) as genome-wide markers and succeeded in demonstrating geographical structures of the foxtail millet. A neighbor-joining dendrogram based on TD grouped the foxtail millet accessions into eight major clusters, each of which consisted of accessions collected from adjacent geographical areas. Eleven out of 12 green foxtail accessions were grouped separately from the clusters of foxtail millet. These results indicated strong regional differentiations and a long history of cultivation in each region. Furthermore, we discuss the relationship between foxtail millet and green foxtail and suggest a monophyletic origin of foxtail millet domestication.  相似文献   

2.
In this study, 28 simple sequence repeat (SSR) primer sets were used to analyze the genetic diversity, population structure, and genetic relationships among 37 accessions of foxtail millet from Korea, China and Pakistan. A total of 298 alleles were detected with an average allele number of 10.6 per locus among 37 foxtail millet accessions. The number of alleles per locus ranged from 2 (b226) to 20 (b236). Of the 298 alleles, 138 alleles (46.3%) were rare (frequency < 0.05), 152 alleles (51.0%) were detected at an intermediate frequency (range, 0.05?C0.50), and eight alleles (2.7%) were abundant (frequency > 0.50), respectively. The average gene diversity values were 0.652, 0.692, and 0.491 and polymorphic information content values were 0.621, 0.653, and 0.438, for accessions from Korea, China, and Pakistan, respectively. The accessions from China showed higher SSR diversity than those from Korea and Pakistan. A phylogenetic tree constructed using the un-weighted pair group methods with arithmetic mean algorithm revealed three major groups of accessions that were not congruent with geographical distribution patterns with a few exceptions. The lack of correlation between the accession clusters and their geographic location indicates that the diffusion of foxtail millet from China to Korea might have occurred through multiple routes. Our results provide support for the origin and diffusion route of foxtail millet in East Asia. This SSR-based assessment of genetic diversity, genetic relationships, and population structure among genetic resources of foxtail millet landraces will be valuable to foxtail millet breeding and genetic conservation programs in Korea.  相似文献   

3.
Zhang J  Lu H  Wu N  Yang X  Diao X 《PloS one》2011,6(5):e19726
Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.  相似文献   

4.
Gupta S  Kumari K  Das J  Lata C  Puranik S  Prasad M 《Génome》2011,54(7):586-602
Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ~97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.  相似文献   

5.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

6.
7.
MADS-box基因是真核生物中一类重要的转录因子,参与调控多项植物的生长发育过程。然而关于谷子穗发育的MADS-box基因研究比较少。本研究使用序列相似性检索,在Phytozome 13.0数据库中筛选并且鉴定出了68个谷子MADS家族成员,并对这些家族成员的物理化学性质、系统发育树、染色体定位、表达谱等进行了全面的分析。结果表明,谷子MADS家族成员在染色体上分布不均匀,可以分为5个亚族。通过组织特异性表达谱分析得到,多数MADS基因在穗中表达量要高于其他器官。此外利用转录组测序技术对发育初期的谷穗和成熟期的谷穗进行了转录组测序分析,筛选到数个与谷穗分生组织发育相关MADS-box基因。为进一步揭示MADS-box基因在谷子穗发育过程中的作用奠定了重要的基础。  相似文献   

8.
We sequenced ribosomal DNA intergenic spacer subrepeats and their flanking regions of foxtail millet landraces from various regions in Europe and Asia and its wild ancestor to elucidate phylogenetic differentiation within each of types I–III found in our previous work and to elucidate relationships among these three types. Type I was classified into seven subtypes designated as Ia–Ig based on subrepeat sequences; C repeats downstream of those subrepeats are also polymorphic. Of these, subtypes Ia–Id and Ig were found in foxtail millet landraces. Subtypes Ia and Ib were distributed broadly throughout Asia and Europe. Subtype Ic was distributed in China, Korea and Japan. Subtype Id has a 20-bp deletion in subrepeat 3 and has a unique C repeat sequence. This subtype was found in a morphologically primitive landrace group from Afghanistan and northwestern Pakistan and differed greatly from other type I subtypes, implying that these landraces were domesticated independently. Subtypes Ig was found in a landrace from Pakistan and Ia and Ie–Ig were in six wild ancestor accessions. Type II was also highly polymorphic and four subtypes were found and designated as subtypes IIa–IId, but sequence analyses indicated type III as monomorphic. The present work indicates that type III should be classified as a subtype of type II (subtype IIe). Sequence polymorphism of subrepeats of types I–III indicated that subrepeats of subtype IIa are greatly divergent from others. Relationships among types I–III are much more complicated than anticipated based on previous RFLP work.  相似文献   

9.
10.
Zhang G  Liu X  Quan Z  Cheng S  Xu X  Pan S  Xie M  Zeng P  Yue Z  Wang W  Tao Y  Bian C  Han C  Xia Q  Peng X  Cao R  Yang X  Zhan D  Hu J  Zhang Y  Li H  Li H  Li N  Wang J  Wang C  Wang R  Guo T  Cai Y  Liu C  Xiang H  Shi Q  Huang P  Chen Q  Li Y  Wang J  Zhao Z  Wang J 《Nature biotechnology》2012,30(6):549-554
Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (~423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C(4) photosynthesis pathway were also identified.  相似文献   

11.
SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F2 population, i.e. “B100” of cultivated S. italica and “A10” of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces’ grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Foxtail millet [Setaria italica (L.) P. Beauv.] is an important small millet, grown as a short duration, drought tolerant crop across the world. This crop can be grown on wide ranges of soil conditions and has an immense potential for food and fodder in rainfed and arid regions of the India. In the present study, 31 primer pairs (27 SSR and 4 EST-SSR) were used to analyse the genetic diversity in 223 core collection accessions. Analysis resulted in detection of a total of 136 alleles with an average of 4.38 alleles per locus. Among these 136 alleles, 22 were rare, 70 were common and 44 were frequent. The PIC value ranged from 0.01 to 0.86 with an average of 0.31. The average number of observed alleles ranged from 2.0 (northern hills of India accessions) to 4.06 (exotic) with an average of 2.72. The mean Shannon’s Information Index ranged from 0.44 (northern hills of India) to 0.69 (exotic) with an average of 0.52. Pair-wise Fst values indicated little to moderate genetic differentiation among the group of accessions. UPGMA clustering grouped the accessions into two major groups while analysis for population substructure indicated presence of four subpopulations. However there was no statistically well supported grouping of the accessions based on eco-geographic specificities. The core collection designated here represented substantial genetic diversity at molecular level, hence may be a good source of diversity for use in foxtail improvement programs in the region.  相似文献   

13.
Dehydration-responsive element binding (DREB) genes assist in improving stress tolerance of plants by activating the expression of several stress-responsive genes. Therefore, development of functional markers for useful alleles utilizing DREB genes is crucial for crop improvement strategies. Earlier we reported a synonymous single nucleotide polymorphism (SNP) associated with dehydration tolerance at 558th bp (an A/G transition) in the SiDREB2 gene of foxtail millet (Setaria italica L.) and developed an allele-specific marker (ASM) for SiDREB2. In the present study, we validated this ASM using a set of 122 foxtail accessions, of which 45 were investigated in an earlier study. The QTL associated with SiDREB2 contributed to ~20 % of the total phenotypic variation (PV) for relative water content (RWC) and this signified the importance of this QTL for dehydration tolerance in foxtail millet.  相似文献   

14.
Comparative genetic maps were constructed of the pearl millet genome with foxtail millet and used to describe the homoeology between the genomes of pearl millet, foxtail millet and rice. Despite the close taxonomic relationship of pearl and foxtail millet, their genomes were highly, rearranged. A comparison of the millet and rice genomes indicated that most of these rearrangements were likely to have taken place in pearl millet. Two duplications were identified in pearl millet. A duplication between the distal segments of linkage groups 1 and 4 corresponds to the ancient duplication previously identified between rice chromosome arms 11S and 12S and foxtail millet chromosomes VII and VIII. The other putative duplication, also between regions of linkage groups 1 and 4, is likely to be species-specific. The exploitation of the comparative maps in pearl millet research is discussed. Received: 10 February 1999 / Accepted: 6 July 1999  相似文献   

15.
We carried out genetic analysis and mapping of a gene for the tip-branched panicle (Nekode or Neko-ashi in Japanese) in foxtail millet. We revealed that this trait is controlled by a single dominant gene by using two F2 populations and designated the gene as NEKODE1. By using an F2 population between closely related Taiwanese landraces with a new method based on next-generation sequencing (NGS), QTL-seq, we successfully and rapidly mapped the responsible gene (NEKODE1) on chromosome 9. We also mapped the gene by using SSR markers to verify that this gene is located at the position on chromosome 9, suggested by QTL-seq, and we obtained SSR markers closely linked to the gene and found several candidate genes for this trait in a foxtail millet genome sequence database. The use of a foxtail millet genome sequence and NGS enables rapid mapping of a gene(s) by using a segregation population derived from a cross even between closely related foxtail millet landraces.  相似文献   

16.
高蓓  胡凝  郭彦龙  顾蔚  邹继业 《生态学杂志》2017,28(10):3331-3340
谷子是中国干旱和半干旱区主要的粮食作物之一.它耐旱、耐瘠薄、抗逆性强、适应性广,是未来应对干旱形势的重要战略储备作物.本文基于谷子的157个地理分布点数据,利用中国谷子产量与环境指标的相关性分析,选出10个气候指标、7个土壤指标和3个地形指标,采用MaxEnt、EMFA、RF和GAM共4个物种分布模型,分析中国谷子的潜在适宜性分布.结果表明: 4种模型均可成功模拟谷子的潜在地理分布,其中,MaxEnt模型的模拟效果最好.选用的环境指标中,水热条件对谷子生长最敏感.模型结果结合ArcGIS空间分析模块的结果表明,中国谷子的潜在适宜生长区(最适宜区和适宜区)总面积为55.68×104 km2,远远大于当前谷子的实际种植面积,主要集中在东北地区的东北平原、长白山以南与牡丹江流域,华北地区的淮河以北,华中地区汉江以东与大别山以北,西北地区的黄土高原、鄂尔多斯高原南部、祁连山脉东部、天山山脉东部与阿尔泰山脉,西南地区的重庆以北和贵州西部局地区域.  相似文献   

17.
倒伏是植株与其生长的环境条件相互作用的结果,是禾谷类作物产量和品种的重要限制因素。诱发倒伏的自然条件不是年年发生,但发生的程度差异很大,难以在自然条件下重复评价作物的倒伏性,因而人工诱发倒伏对于作物抗倒性的评价十分重要。谷子是非常容易发生倒伏的禾谷类作物,抗倒性的强弱是决定谷子高产、稳产的关键因素之一。由于谷子抗倒性的研究相对较少,本文通过对禾谷类作物抗倒伏性研究方法和评价指标的述评,为谷子抗倒性的研究提供借鉴,并对谷子倒伏与植株和产量性状的关系、品种抗倒性评价的指标等相关研究的进展做一综述。  相似文献   

18.
Transposable elements (TEs) are major components of plant genome and are reported to play significant roles in functional genome diversity and phenotypic variations. Several TEs are highly polymorphic for insert location in the genome and this facilitates development of TE-based markers for various genotyping purposes. Considering this, a genome-wide analysis was performed in the model plant foxtail millet. A total of 30,706 TEs were identified and classified as DNA transposons (24,386), full-length Copia type (1,038), partial or solo Copia type (10,118), full-length Gypsy type (1,570), partial or solo Gypsy type (23,293) and Long- and Short-Interspersed Nuclear Elements (3,659 and 53, respectively). Further, 20,278 TE-based markers were developed, namely Retrotransposon-Based Insertion Polymorphisms (4,801, ∼24%), Inter-Retrotransposon Amplified Polymorphisms (3,239, ∼16%), Repeat Junction Markers (4,451, ∼22%), Repeat Junction-Junction Markers (329, ∼2%), Insertion-Site-Based Polymorphisms (7,401, ∼36%) and Retrotransposon-Microsatellite Amplified Polymorphisms (57, 0.2%). A total of 134 Repeat Junction Markers were screened in 96 accessions of Setaria italica and 3 wild Setaria accessions of which 30 showed polymorphism. Moreover, an open access database for these developed resources was constructed (Foxtail millet Transposable Elements-based Marker Database; http://59.163.192.83/ltrdb/index.html). Taken together, this study would serve as a valuable resource for large-scale genotyping applications in foxtail millet and related grass species.  相似文献   

19.
MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5′-RLM-RACE) method.  相似文献   

20.
We present evidence from ethnography and experimental processing of foxtail millet (Setaria italica (L.) P. Beauv.) in China that spikelets containing incompletely filled (or immature) grains constitute a significant portion of typical millet harvests and are removed along with other by-products after threshing and winnowing. This study provides a baseline for the identification of immature foxtail grains in archaeobotanical assemblages. Immature millet grains are a frequent component of archaeobotanical assemblages in Neolithic and Bronze Age China, and criteria for their recognition are presented based on our modern experimental result and illustrated with archaeobotanical examples from Shandong and Henan. It is seed morphology rather than size that plays a determinative role in the identification of foxtail millet. It is suggested that those grains with a narrow egg-shaped embryo, which is about 5/6 of the whole grain, and having a round shape can be classed as foxtail millet even though they are small, flat and squashed. While different grades of immaturity in millet grains might be defined, the interpretative potential of these appears to be negligible as all immature grains are concentrated in winnowing waste. This study confirms the suggestion that the ratio of immature to mature millet grains can be employed in archaeobotany in considering whether or not early stage crop processing (threshing and winnowing) contributed to the formation of particular archaeological millet assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号