首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

2.
17 alpha-Methyltestosterone and the reduced metabolites, 17 alpha-methyl-5 alpha-androstane-3 alpha, 17 beta-diol, 17 alpha-methyl-5 alpha-androstane-3 beta, 17 beta-diol and 17 alpha-methyl-5 beta-androstane-3 alpha, 17 beta-diol, together with three hydroxylated metabolites, 17 alpha-methyl-5 beta-androstane-3 alpha, 16 alpha, 17 beta-triol, 17 alpha-methyl-5 beta-androstane-3 alpha, 16 beta, 17 beta-triol and a new metabolite, 17 alpha-methyl-5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol, were isolated and identified in the urine of rabbits dosed with 17 alpha-methyltestosterone. No hydroxylated 5 alpha-metabolite of 17 alpha-methyltestosterone has been identified previously. No of 17 alpha-methyltestosterone has been identified previously. No evidence for epimerization at the C-17 position was observed.  相似文献   

3.
W Sch?nzer  G Opfermann  M Donike 《Steroids》1992,57(11):537-550
The 17-epimers of the anabolic steroids bolasterone (I), 4-chlorodehydromethyltestosterone (II), fluoxymesterone (III), furazabol (IV), metandienone (V), mestanolone (VI), methyltestosterone (VII), methandriol (VIII), oxandrolone (IX), oxymesterone (X), oxymetholone (XI), stanozolol (XII), and the human metabolites 7 alpha,17 alpha-dimethyl-5 beta-androstane-3 alpha,17 beta-diol (XIII) (metabolite of I), 6 beta-hydroxymetandienone (XIV) (metabolite of V), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (XV) (metabolite of V), 3'-hydroxystanozolol (XVI) (metabolite of XII), as well as the reference substances 17 beta-hydroxy-17 alpha-methyl-5 beta-androstan-3-one (XVII), 17 beta-hydroxy-17 alpha-methyl-5 beta-androst-1-en-3-one (XVIII) (also a metabolite of V), the four isomers 17 alpha-methyl-5 alpha-androstane-3 alpha,17 beta-diol (XIX) (also a metabolite of VI, VII, and XI), 17 alpha-methyl-5 alpha-androstane-3 beta,17 beta-diol (XX), 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (XXI) (also a metabolite of V, VII, and VIII), 17 alpha-methyl-5 beta-androstane-3 beta,17 beta-diol (XXII), and 17 beta-hydroxy-7 alpha,17 alpha-dimethyl-5 beta-androstan-3-one (XXIII) were synthesized via a 17 beta-sulfate that spontaneously hydrolyzed in water to several dehydration products, and to the 17 alpha-hydroxy-17 beta-methyl epimer. The 17 beta-sulfate was prepared by reaction of the 17 beta-hydroxy-17 alpha-methyl steroid with sulfur trioxide pyridine complex. The 17 beta-methyl epimers are eluted in gas chromatography as trimethylsilyl derivatives from a capillary SE-54 or OV-1 column 70-170 methylen units before the corresponding 17 alpha-methyl epimer. The electron impact mass spectra of the underivatized and trimethylsilylated epimers are in most cases identical and only for I, II, and V was a differentiation between the 17-epimers possible. 1H nuclear magnetic resonance (NMR) spectra show for the 17 beta-methyl epimer a chemical shift for the C-18 protons (singlet) of about 0.175 ppm (in deuterochloroform) to a lower field. 13C NMR spectra display differences for the 17-epimeric steroids in shielding effects for carbons 12-18 and 20. Excretion studies with I-XII with identification and quantification of 17-epimeric metabolites indicate that the extent of 17-epimerization depends on the A-ring structure and shows a great variation for the different 17 alpha-methyl anabolic steroids.  相似文献   

4.
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.  相似文献   

5.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

6.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

7.
A Ghoshal  G Feuer 《Steroids》1984,43(6):621-630
Microsomes isolated from the liver of the female rat specifically bind progesterone. The progesterone-microsomal complex shows highly specific characteristics. The binding is probably associated with the carbonyl groups at positions C-20 and C-3. Other steroids compete for microsomal binding sites less effectively. Competition for progesterone binding sites by other steroids in percentages: testosterone 33; testosterone propionate, 9; 17-methyltestosterone, 23.2; cortisol, 6.4; estradiol-17 beta, 1.8; 17 alpha-ethynyl estradiol, 4.7; mestranol, 1.0; norethynodrel, 4.5; ethisterone, 7.1; lynestrenol, 4.3; medroxyprogesterone, 23.3; medroxyprogesterone acetate, 15.2; 5 alpha-pregnane-3,20-dione, 47.6; 5 beta-pregnane-3,20-dione, 20.7; pregnenolone, 14.8; 6-methylpregnenolone, 1.2; 16 alpha-methylpregnenolone, 3.8%; 20 beta-hydroxy-4-pregnen-3-one, 2.8; 3 beta-hydroxy-5 alpha-pregnan-20-one, 5.2; 4-pregnene-3 beta, 20 beta-diol, 2.1; 11 alpha-hydroxyprogesterone 21.0; 16 alpha-hydroxyprogesterone, 7.9; 17-hydroxyprogesterone, 26.7; 16 alpha, 17-epoxyprogesterone, 2.7; 16 alpha-methylprogesterone, 3.8; 6-methylpregnenolone, 1.2; 16 alpha-methylpregnenolone, 3.8; promegestone, 27.0. 3 beta-Hydroxy-5 beta-pregnan-20-one, 3 alpha-hydroxy-5 beta-pregnan-20-one, 5-pregnene-3 beta,20 beta-diol, 5-pregnene-3 beta, 20 alpha-diol; 5 alpha-pregnane-3 beta, 20 beta-diol, 5 alpha-pregnane-3 beta, 20 alpha-diol, 5 beta-pregnane-3 alpha, 20 alpha-diol, 5 beta-pregnane-3 alpha, 20 alpha-diol diacetate, 5 beta-pregnane-3 alpha, 20 beta-diol, 3 alpha, 17-dihydroxy-5 beta-pregnan-20-one, 17-hydroxypregnenolone, 6-methyl-17-hydroxypregnenolone, pregnenolone-16 alpha-carbonitrile, dihydrotestosterone and cholesterol show no competition at all. The varying degree of competition by different steroids is unrelated to their lipid solubility.  相似文献   

8.
7 beta, 17-Dimethyltestosterone (17 beta-hydroxy-7 beta, 17-dimethyl-4-androsten-3-one) (I) was given to three subjects in oral doses of 400 mg per day for ten days. The initial dose contained the steroid tritiated in the 6 and 7 positions. Plasma levels and urinary excretion patterns were followed in all three subjects. Isolations were done on the urine, plasma, and stools of one patient. From the urine 7 beta, 17-dimethyl- 5 alpha-androstane-3 beta,17 beta-diol (VI) was isolated from the nonhydrolyzed fractions. Unchanged (I), 7 beta,17-dimethyl-5 beta-androstane-3 alpha,17 beta-diol (III) and 7 beta, 17-dimethyl-5 beta-androstane-3 beta,17 beta-diol (IV) were isolated from the nonhydrolyzed and enzyme-hydrolyzed fractions. 7 beta,17-dimethyl-5 alpha-androstane-3 alpha,17 beta-diol (V) was isolated from the enzymatic fractions. From the stools were isolated unchanged (I), (III), (IV), (V), and (VI). Unchanged (I) and its 5 alpha-dihydro derivative (17 beta-hydroxy-7 beta,17-dimethyl-5 alpha-androstan-3-one) (II) were identified in the plasma. The total recovery of radioactivity in the one patient on whom the isolations were done was 57%; 40% from the urine and 17% from the stools.  相似文献   

9.
As an extension of our studies on the influence of age on testicular function and with the aim of detecting whether the decline in testosterone production by aged testes is accompanied by a block in the biosynthetic chain leading from cholesterol to testosterone, we determined in the testis of young and elderly men, who died suddenly either from a cardiac incident or from accident, intratesticular steroids: pregnenolone, 17 hydroxypregnenolone (3 beta, 17 alpha-dihydroxy-5-pregnen-20-one), dehydroepiandrosterone, androstenediol, (5-androsten-3 beta, 17 beta-diol), progesterone, 17 hydroxyprogesterone, androstenedione, 17 beta-estradiol as well as testosterone, dihydrotestosterone (5 alpha-androstan-17 beta-ol-3-one) and androstanediol (5 alpha androstane-3 alpha, 17 beta-diol). The intratesticular steroid pattern in elderly men was essentially characterized by a decrease of the 5-ene steroid concentration, whereas we did not observe a decrease in the 4-ene steroids, progesterone concentration being even significantly higher in the aged testes. There was no evidence for a decrease in either lyase or 17-hydroxylase activity. It is suggested that the steroid pattern as observed in the aged testes is the consequence of a decreased oxygen supply, due to a decreased testicular perfusion.  相似文献   

10.
Kim E  Ma E 《Steroids》2007,72(4):360-367
The chemoselectivity of rigid cyclic alpha,beta-unsaturated carbonyl group on the reducing agents was influenced by the ring size and steric factor. Cholesterol (cholest-5-en-3beta-ol) and dehydroepiandrosterone (DHEA) were oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione. They were reduced with NaBH(4), lithium tri-sec-butylborohydride (l-Selectride), LiAlH(4), 9-borabicyclo[3.3.1]nonane (9-BBN), lithium triethylborohydride (Super-hydride), and BH(3) x (CH(3))(2)S in various conditions, respectively. Reduction of 1,4,6-cholestatrien-3-one and 1,4,6-androstatriene-3,17-dione by NaBH(4) (4 equiv.) produced 4,6-cholestadien-3beta-ol and 4,6-androstadiene-3beta,17beta-diol, respectively. Reduction by l-Selectride (12 equiv.) afforded 4,6-cholestadien-3alpha-ol and 4,6-androstadiene-3alpha,17beta-diol, chemoselectively. Reaction with Super-hydride (12 equiv.) produced 4,6-cholestadien-3-one and 3-oxo-4,6-androstadien-17beta-ol. Reduction of 1,4,6-cholestatrien-3-one by 9-BBN (14 equiv.) produced 1,4,6-cholestatrien-3alpha-ol, but 1,4,6-androstatriene-3,17-dione was not reacted with 9-BBN in the reaction conditions. Reaction of LiAlH(4) (6 equiv.) formed 4,6-cholestadien-3beta-ol and 3-oxo-1,4,6-androstatrien-17beta-ol. Reduction of 1,4,6-cholestatrien-3-one by BH(3) x (CH(3))(2)S (11 equiv.) gave cholestane as major compound and unlike reactivity of cholesterol, 1,4,6-androstatriene-3,17-dione by 8 equiv. of BH(3) x (CH(3))(2)S formed 3-oxo-1,4,6-androstatrien-17beta-ol. LiAlH(4) and BH(3) x (CH(3))(2)S showed relatively low chemoselectivity.  相似文献   

11.
H Kohara 《Steroids》1988,52(3):295-309
A microsomal fraction of testicular tissue from a patient with prostatic carcinoma was incubated with [4-14C]pregnenolone in the presence of an NADPH-generating system for different periods of time. The metabolites were separated by Sephadex LH-20 column chromatography and then identified by thin-layer chromatography, radio-gas chromatography, and crystallization studies. Pregnenolone was converted to a major metabolite, 5-androstene-3 beta,17 beta-diol via 17-hydroxypregnenolone and then dehydroepiandrosterone. Another major metabolite was 5,16-androstadien-3 beta-ol, which increased with the time of incubation and accumulated in the incubation medium. After 120 min of incubation, 34.6% of the precursor was converted to 5-androstene-3 beta,17 beta-diol and 15.1% to 5,16-androstadien-3 beta-ol. In addition to the above-mentioned steroids, 16 alpha-hydroxypregnenolone, 5-pregnene-3 beta,20 alpha-diol, and 5-androstene-3 beta,17 alpha-diol were identified as minor metabolites of pregnenolone. From these results it was concluded that human testicular microsomes possess enzymic activities for the synthesis of 5,16-androstadien-3 beta-ol, as well as androgens from pregnenolone.  相似文献   

12.
Efficient syntheses of new DHEA analogues, and their apoptotic and necrotic effects on Leydig cells and TM4 Sertoli cells are described. The key step in the synthetic strategy of 7-amino-DHEA derivatives involves a bromination on C-7 position to give an epimeric mixture of bromides which were substituted by azides and reduced to give 7alpha- and 7beta-amino-3beta-hydroxyandrost-5-en-17-ones. No cytotoxic effect induced by apoptosis mechanism was observed on Leydig and TM4 Sertoli cells by treatment with these amino-DHEA analogues. A necrotic effect was induced only in TM4 Sertoli cells. The best activity was obtained with 7alpha,beta-amino-androst-5-en-3beta-ol and 7beta-amino-3beta-hydroxy-androst-5-en-17-one.  相似文献   

13.
14.
This study has examined the importance of the isocaproic side chain at C-17 of cholesterol to sterol/phospholipid interactions in monolayer membranes and to the cholesterol oxidase-susceptibility of cholesterol in pure and mixed monolayers at the air/water interface. The interactions between cholesterol or 5-androsten-3 beta-ol (which lacks the C-17 side chain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in monolayers indicated that 5-androsten-3 beta-ol was not very efficient in causing condensation of the monolayer packing of POPC. Whereas cholesterol condensed the packing of POPC at all molar fractions examined (i.e., 0.25, 0.50 and 0.75 with regard to POPC), 5-androsten-3 beta-ol caused a slight condensing effect on POPC packing only in the equimolar mixture. The mean molecular area requirement of 5-androsten-3 beta-ol (in pure sterol monolayers at different lateral surface pressures) was 2.2-6.7% less than that observed for cholesterol. The pure 5-androsten-3 beta-ol monolayer also collapsed at lower lateral surface pressures compared with the pure cholesterol monolayer (34 mN/m and 45 mN/m, respectively). The cholesterol oxidase (Streptomyces sp.) catalyzed oxidation of cholesterol or 5-androsten-3 beta-ol in pure monolayers in the air/water interface (10 mN/m) proceeded with very similar rates, indicating that the enzyme did not recognize that the C-17 side chain of 5-androsten-3 beta-ol was missing. The oxidation of cholesterol or 5-androsten-3 beta-ol in mixed POPC-containing monolayers (equimolar mixture) also revealed similar reaction rates, although the reaction was slower in the mixed monolayer compared with the pure sterol monolayer. When the oxidation of cholesterol and 5-androsten-3 beta-ol was examined by monitoring the production of H2O2 (the sterol was solubilized in 2-propanol and the assay conducted in phosphate buffer), the maximal reaction rate observed with 5-androsten-3 beta-ol was only about 41% of that measured with cholesterol. From the cholesterol oxidase point-of-view, it can be concluded that the enzyme did not recognize the C-17 side chain of cholesterol (or lack of it in 5-androsten-3 beta-ol), when the sterol was properly oriented as a monolayer at the air/water interface. However, when the substrate was presented to the enzyme in a less controlled orientation (organic solvent in water), 5-androsten-3 beta-ol may have oriented itself unfavorably compared with the orientation of cholesterol, thereby leading to slower oxidation rates.  相似文献   

15.
After oral administration of metandienone (17 alpha-methyl-androsta-1,4-dien-17 beta-ol-3-one) to male volunteers conjugated metabolites are isolated from urine via XAD-2-adsorption, enzymatic hydrolysis and preparative high-performance liquid chromatography (HPLC). Four conjugated metabolites are identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionization after derivatization with N-methyl-N-trimethyl-silyl-trifluoroacetamide/trimethylsilyl-imidazole (MSTFA/TMS-Imi) and comparison with synthesized reference compounds: 17 alpha-methyl-5 beta-androst-1-en-17 beta-ol-3-one (II), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (III), 17 beta-methyl-5 beta-androst-1-ene-3 alpha,17 alpha-diol (IV) and 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (V). After administration of 40 mg of metandienone four bis-hydroxy-metabolites--6 beta,12-dihydroxy-metandienone (IX), 6 beta,16 beta-dihydroxy-metandienone (X), 6 beta,16 alpha-dihydroxy-metandienone (XI) and 6 beta,16 beta-dihydroxy-17-epimetandienone (XII)--were detected in the unconjugated fraction. The metabolites III, IV and V are excreted in a comparable amount to the unconjugated excreted metabolites 17-epimetandienone (VI), 6 beta-hydroxy-metandienone (VII) and 6 beta-hydroxy-17-epimetandienone (VIII). Whereas the unconjugated excreted metabolites show maximum excretion rates between 4 and 12 h after administration the conjugated metabolites III, IV and V are excreted with maximum rates between 12 and 34 h.  相似文献   

16.
Feeding the thermogenic steroid, 5-androsten-3 beta-ol-17-one (dehydroepiandrosterone, DHEA) in the diet of rats induced the synthesis of liver mitochondrial sn-glycerol 3-phosphate dehydrogenase to levels three to five times that of control rats within 7 days. The previously reported enhancement of liver cytosolic malic enzyme was confirmed. The induction of both enzymes was detectable at 0.01% DHEA in the diet, reached plateau stimulation at 0.1 to 0.2%, and was completely blocked by simultaneous treatment with actinomycin D. Feeding DHEA caused smaller, but statistically significant increases of liver cytosolic lactate, sn-glycerol 3-phosphate, and isocitrate (NADP(+)-linked) dehydrogenases but not of malate or glucose 6-phosphate dehydrogenases. The capability of DHEA to enhance mitochondrial glycerophosphate dehydrogenase and malic enzyme was influenced by the thyroid status of the rats; was smallest in thyroidectomized rats and highest in rats treated with triiodothyronine. 5-Androsten-3 beta,17 beta-diol and 5-androsten-3 beta-ol-7,17-dione were as effective as DHEA in enhancing the liver mitochondrial glycerophosphate dehydrogenase and malic enzyme. Administering compounds that induce the formation of cytochrome P450 enzymes enhanced liver malic enzyme activity but not that of mitochondrial glycerophosphate dehydrogenase. Arochlor 1254 and 3-methylcholanthrene also increased the response of malic enzyme to DHEA feeding.  相似文献   

17.
[16 alpha-2H]Pregnenolone was synthesized by catalytic deuteriation of 3 beta-hydroxy-5,16-pregnadien-20-one followed by base-catalyzed back exchange of the 17 alpha-2H atom, and [16 beta-2H]pregnenolone by catalytic hydrogenation of 3 beta-hydroxy-5,16-[16-2H]pregnadien-20-one, which had been synthesized from [16,16-2H]dehydroepiandrosterone. The labelled pregnenolones were incubated separately with the microsomal fraction of boar testis. The metabolites were analyzed by gas chromatography-mass spectrometry, and the isotope compositions of the following six metabolites were determined: 17-hydroxypregnenolone, dehydroepiandrosterone, 5-androstene-3 beta,17 alpha-diol, 5-androstene-3 beta,17 beta-diol,16 alpha-hydroxypregnenolone and 5,16-androstadien-3 beta-ol. The first four metabolites derived either from [16 alpha-2H]- or from [16 beta-2H]pregnenolone showed essentially the same isotope compositions as those of their respective precursors. The 16 alpha-hydroxypregnenolone and the 5,16-androstadien-3 beta-ol biosynthesized from [16 alpha-2H]pregnenolone lost the 2H label, while the same metabolites biosynthesized from [16 beta-2H]pregnenolone retained the albel. The result shows that the 16 alpha-hydrogen is stereospecifically removed with the retention of the 16 beta-hydrogen in the biosynthesis of 5,16-androstadien-3 beta-ol.  相似文献   

18.
Incubation of [7-2H2]cholesterol with soybean lipoxygenase and linoleic acid in the presence of oxygen gave a mixture of 5-cholestene-3 beta,7 alpha-diol, 5-cholestene-3 beta,7 beta-diol, 3 beta-hydroxy-5-cholesten-7-one,5 alpha,6 alpha-epoxycholestan-3 beta-ol, and 5 beta,6 beta-epoxycholestan-3 beta-ol. The conversion into the 7-oxygenated products was associated with a very high intermolecular isotope effect (KH/KD = 15-17), suggesting that the rate-limiting step in the overall conversion is likely to be the abstraction of hydrogen at C-7 in a radical reaction. Evidence that linoleic acid is to some extent directly involved was obtained with the use of [7-3H]cholesterol. Incubation of [7-3H]cholesterol resulted in a significant incorporation of 3H in the reisolated linoleic acid fraction. The isotope effect associated with conversion of [7 alpha-2H]cholesterol into 7-oxygenated products in the lipoxygenase system was 2-3, indicating that the extraction of hydrogen is nonstereospecific. Incubation of [7-2H2]cholesterol with 13-hydroperoxy-9,11-octadecadienoic acid gave the above 7-oxygenated products with relatively small isotope effects (KH/KD = 3-4). It is concluded that the most important mechanism for oxidation of cholesterol at C-7 in the lipoxygenase system involves participation of radicals and that a carbon-centered linoleic acid radical can extract hydrogen directly from cholesterol. Fatty acid hydroperoxides and their secondary products seem to be less important as initiators in connection with oxidation of cholesterol.  相似文献   

19.
Low density lipoprotein (LDL) cholesterol is known to be oxidized both in vitro and in vivo giving rise to oxygenated sterols. Conflicting results, however, have been reported concerning both the nature and the relative concentrations of these compounds in oxidized human LDL. We examined the extracts obtained from Cu(2+)-oxidized LDL. Thin layer chromatography analysis showed that the sterol mixture became more complex with reaction time. Analysis of the components by thin layer chromatography and mass spectrometry allowed to establish that 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha OOH and beta OOH) are largely prevalent among the oxysterols at early times of oxidation. These hydroperoxy derivatives have not been previously identified in oxidized LDL. The concentration of 7-hydroperoxycholest-5-en-3 beta-ol decreased with oxidation time with a concomitant increase of cholest-5-en-3 beta, 7 alpha-diol (7 alpha OH), cholest-5-en-3 beta, 7 beta-diol (7 beta OH), cholesta-3,5-dien-7-one (CD) and cholest-5-en-3 beta-ol-7-one (7CO). After 24 h of oxidation a minor component of the LDL sterols was cholestan-3 beta-ol-5,6-oxide (EP).  相似文献   

20.
Spermatozoa from bovine ejaculates and cauda epiditymidis were incubated with either tritiated 17 beta-hydroxy-5 alpha-androstane-3-one (DHT) or 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol). Examination of the medium incubations demonstrated metabolic conversion of both DHT and 3 alpha-diol when these steriods were incubated with ejaculated sperm. In addition to this interconversion, the following metabolities were identified: 5 alpha-androstane-3 beta, 17 beta-diol, (3 beta-diol), androsterone and 5 alpha-androstane-3, 17-dione (5 alpha-A-dione). Incubations with cauda spermatozoa showed similar metabolic patterns. Androgen binding was exhibited by both sperm types. Examination of the washed cauda sperm pellet, following incubations with 3 alpha-diol showed that the incubated steroid was the most abundantly bound. DHT and 5 alpha-androst-16-en-3 alpha-ol (delta 16-3 alpha-ol1 were also detected. The major part of the radioactivity bound in the sperm pellet was identified as DHT when this steroid was used as the substrate; the remaining radioactivity consisted of 3 alpha-diol and delta 16-3 alpha-ol. Investigations of ejaculated sperm pellets gave similar results apart from the additional identification of 5 alpha-androst-16-en-3 one (delta 16-3-one) and 5 alpha-androst-16-en-3 beta-ol (delta 16-3 beta-ol (delta 16-3 beta-ol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号