首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the origin and assembly of glomerular basement membranes (GBMs), affinity purified anti-laminin IgG was directly coupled to horseradish peroxidase (HRP) and intravenously injected into newborn rats. Kidneys were then processed for peroxidase histochemistry and microscopy. Within 1 h after injection, anti-laminin bound to basement membranes of nephrons in all developmental stages (vesicle, comma, S-shaped, developing capillary loop, and maturing glomeruli). In S-shaped and capillary loop glomeruli, anti-laminin-HRP labeled a double basal lamina between the endothelium and epithelium. Sections incubated with anti-laminin in vitro showed labeling within the rough endoplasmic reticulum of endothelium and epithelium, indicating that both cell types synthesized laminin for the double basement membrane. In maturing glomeruli, injected anti-laminin-HRP bound throughout the GBMs, and double basement membranes were rarely observed. At this stage, however, numerous knobs or outpockets of basement membrane material extending far into the epithelial side of the capillary wall were identified and these were also labeled throughout their full thickness. No such outpockets were found in the endothelial cell layer of newborn rats (and they normally are completely absent in fully mature, adult glomeruli). In contrast with these results, in kidneys fixed 4-6 d after anti-laminin IgG-HRP injection, basement membranes of vesicle, comma, and S-shaped nephrons were unlabeled, indicating that they were assembled after injection. GBM labeling was seen in maturing glomeruli, however. In addition, the outpockets of basement membrane extending into the epithelium were often completely unlabeled whereas GBMs lying immediately beneath them were labeled intensely, which indicates that the outpockets were probably assembled by the epithelium. Injections of sheep anti-laminin IgG followed 8 d later with injections of biotin-rabbit anti-laminin IgG and double-label immunofluorescence microscopy confirmed that GBM formation continued during individual capillary loop expansion. GBM assembly therefore occurs by at least two different processes at separate times in development: (a) fusion of endothelial and epithelial basement membranes followed by (b) addition of new basement membrane from the epithelium into existing GBMs.  相似文献   

2.
Summary To determine whether circulating antibodies against laminin can bind in vivo to basement membranes within endocrine glands, affinity-purified sheep or rabbit anti-laminin IgG was intravenously injected into rats. One to five hours after injection, anti-laminin IgG was bound to all basement membranes of adrenal and anterior pituitary glands of mature as well as 2-day-old newborn rats as shown by immunofluorescence microscopy. After the injection of anti-laminin conjugated directly to horseradish peroxidase (HRP), HRP reaction product was also present throughout adrenal and pituitary basement membranes in mature and immature glands 1–5 h post-injection. Ultrathin Lowicryl sections from rats that received unconjugated rabbit anti-laminin IgG 1 h prior to fixation with paraformaldehyde were labeled directly with anti-rabbit IgG-colloidal gold. In these cases, gold also bound specifically over the lamina densa and lamina rara. When adrenal or pituitary glands from mature rats were examined by immunofluorescence 1 week after the injection of sheep anti-laminin IgG, the patterns and amounts of bound sheep IgG were indistinguishable from those observed 1 h after injection. In contrast, significantly less fluorescence was present in glands from 7-day-old rat pups that had received anti-laminin IgG 5 days earlier. In addition, when anti-laminin IgG-HRP was injected into newborns and glands were fixed 5 days later, lengths of labeled endothelial and epithelial basement membranes were often interspersed with unlabeled lengths in zones of cellular proliferation in the outer adrenal cortex and throughout the pituitary gland. These results indicated that unlabeled basement membranes in these regions were probably assembled after the injection of anti-laminin IgG, which would also explain diminished labeling of basement membranes in these animals. Despite the continued presence of heterologous anti-laminin IgG within endocrine basement membranes, however, rat IgG, rat C3, inflammatory cells, or histologic abnormalities were observed in neither newborn nor adult glands under the conditions examined here. Sections from rats injected with control IgG or control IgG-HRP were entirely negative by immunofluorescence, immunoperoxidase, and immunogold techniques. We therefore conclude that (1) apparently large amounts of circulating anti-laminin IgG can bind to adrenal and pituitary basement membranes, and (2) at least some of these basement membranes are assembled during development by progressive splicing of newly synthesized matrix into that already present.  相似文献   

3.
Kidney glomerular basement membranes (GMBs) originate in development from fusion of a dual basement membrane between endothelial cells and primitive epithelial podocytes. After fusion, segments of newly synthesized matrix, derived primarily from podocytes, appear as subepithelial outpockets and are spliced into GBMs during glomerular capillary loop expansion. To investigate GBM assembly further, we examined newborn mouse kidneys with monoclonal rat anti-mouse laminin IgGs (MAb) conjugated to horseradish peroxidase (HRP). In adults, these MAb strongly label glomerular mesangial matrices but bind only weakly or not at all to mature GBMs. In contrast, anti-laminin MAb intensely bound newborn mouse GBMs undergoing initial assembly. After intraperitoneal injection of MAb-HRP into neonates, dense binding occurred across both subendothelial and subepithelial pre-fusion GMBs as well as forming mesangial matrices. Considerably less MAb binding was seen, however, in post-fusion GBMs from more mature glomeruli in the same section, although mesangial matrices remained positive. In addition, new subepithelial segments in areas of splicing were negative. These results conflict with those obtained previously with injections of polyclonal anti-laminin IgGs into newborns or adults, which result in complete labeling of all GBMs. Although epitope masking cannot be completely excluded, we believe that decreased MAb binding to developing GBM reflects actual epitope loss. This loss could occur by laminin isoform substitution, conformational change, and/or proteolytic processing during GBM assembly.  相似文献   

4.
Ultrastructural distribution of laminin within renal glomerular (GBM) and tubular basement membranes (TBM) was investigated using post-embedding immunolocalization with colloidal gold. Rat kidneys were fixed with 4% formaldehyde and embedded at 4 degrees C in Lowicryl K4M medium. Thin sections were then sequentially treated with affinity-purified rabbit anti-laminin IgG and anti-rabbit IgG conjugated to 10 nm diameter colloidal gold. Gold bound specifically to the GBM and TBM with particle densities of 690/micron2 and 731/micron2, respectively. In the GBM, the number of gold particles bound/micron2 of lamina densa greater than lamina rara externa greater than lamina rara interna. Closely similar binding patterns were found when kidneys were fixed with 0.5% glutaraldehyde plus 3% formaldehyde and embedded at 60 degrees C in L.R. White resin, but slightly less gold bound to sections overall than that seen with formaldehyde alone and Lowicryl. Taken together, these results illustrate that anti-laminin IgG, whether applied to fixed sections in vitro or introduced in vivo, bound to the lamina rara interna, lamina densa, and lamina rara externa of the GBM and throughout the TBM.  相似文献   

5.
Embryonic chick corneal explants were soaked in mild detergent and the anterior corneal epithelium was peeled from its basement membrane, leaving the lamina lucida surface exposed and supported on the subjacent primary stroma. Explants were treated with rabbit anti-laminin IgG, followed by sheep anti-rabbit IgG linked microspheres, and processed for SEM. The lucida surface was heavily decorated with microspheres, whereas controls treated with preimmune rabbit IgG were essentially beadless. Laminin distribution was not regular, appearing denser in some regions than others. However, the connective tissue surface of the basement membrane was never laminin-positive, even after treatment with hyaluronidase. These results suggest the basal lamina of the corneal epithelium is asymmetric, with preferential location of laminin to the lucida surface of the basement membrane.  相似文献   

6.
Avascular, undifferentiated mouse kidneys transplanted onto quail chorioallantoic membrane differentiate and become vascularized by quail vessels. The glomeruli which form under these conditions consist of mouse podocytes and quail endothelial cells. Immunohistochemistry has shown that the glomerular basement membrane (GBM) has a dual origin, as integral basement membrane components are produced by both podocytes and endothelial cells. In electron microscopy this GBM is composed of two partially separated layers, an epithelial and an endothelial basal lamina which both have a lamina densa and a lamina rara. These two basal laminas are partially fused, but there are large areas where this fusion does not occur. In some places of incomplete fusion, fibrillar extracellular material is seen between and beneath the GBM. It is concluded that basement membrane components derived from the different species can interact partially, but the fusion is incomplete. The abnormal assembly of the epithelial and the endothelial basal laminas might be due to molecular differences between the components produced by the two cell lineages. In spite of the incomplete fusion, the system used serves as a good model-system to study basement membrane formation, since the cells organize in a histiotypic fashion and form true vascularized glomeruli.  相似文献   

7.
Summary The localization of amyloid P-component (AP) staining was studied by immunofluorescence in renal biopsies from 106 patients with various nephropathies and from 3 patients with normal kidneys. Linear staining was observed along the glomerular basement membranes (GBM) of normal kidneys. In amyloidosis, AP was always present in the glomeruli. In arteriolar walls, AP was present in numerous cases with varied intensity. No fixation was observed along tubular basement membranes. The possible modification of the permeability of GBM, related to a possible modification of the electrical charge of the filtration barrier, can be supposed.Chargé de recherche INSERM  相似文献   

8.
The patterns of silver affinity and following treatment with guanidine were studied in the basement membrane produced by pareital podocytes induced by corticoids in newborn rabbits. The goal of this study was to analyze the role of the different cell types of the renal corpuscle in the determination of the histochemical characteristics of the glomerular basement membrane (GBM). Jones' method shows that while the GBM exhibited silver affinity only after periodic-acid oxidation, the basement membrane of parietal podocytes exhibits the same histochemical characteristics as the normal parietal basement membrane, appearing deep black both after periodic-acid or permanganate oxidation, and after elastase or lysozyme digestions. Since the treatment with guanidine shows that the basement membrane of the parietal podocytes lacks the endothelial component typical of the GBM, it may be suggested that the special resistance to silver impregnation exhibited by the basement membrane after permanganate oxidation or after different enzymatic digestions is due to its endothelial component.  相似文献   

9.
Cellular origin of fibronectin in interspecies hybrid kidneys   总被引:1,自引:1,他引:0       下载免费PDF全文
The cellular origin of fibronectin in the kidney was studied in three experimental models. Immunohistochemical techniques that use cross-reacting or species-specific antibodies against mouse or chicken fibronectin were employed. In the first model studied, initially avascular mouse kidneys cultured on avian chorioallantoic membranes differentiate into epithelial kidney tubules and become vascularized by chorioallantoic vessels. Subsequently, hybrid glomeruli composed of mouse podocytes and avian endothelial-mesangial cells form. In immunohistochemical studies, cross-reacting antibodies to fibronectin stained vascular walls, tubular basement membranes, interstitium, and glomeruli of mouse kidney grafts. The species-specific antibodies reacting only with mouse fibronectin stained interstitial areas and tubular basement membranes, but showed no reaction with hybrid glomeruli and avian vascular walls. In contrast, species-specific antibodies against chicken fibronectin stained both the interstitial areas and the vascular walls as well as the endothelial-mesangial areas of the hybrid glomeruli, but did not stain the mouse-derived epithelial structures of the kidneys. In the second model, embryonic kidneys cultured under avascular conditions in vitro develop glomerular tufts, which are devoid of endothelial cells. These explants showed fluorescence staining for fibronectin only in tubular basement membranes and in interstitium. The avascular, purely epithelial glomerular bodies remained unstained. Finally, in outgrowths of separated embryonic glomeruli, the cross-reacting fibronectin antibodies revealed two populations of cells: one devoid of fibronectin and another expressing fibronectin in strong fibrillar and granular patterns. These results favor the idea that the main endogenous cellular sources for fibronectin in the embryonic kidney are the interstitial and vascular cells. All experiments presented here suggest that fibronectin is not synthesized by glomerular epithelial cells in vivo.  相似文献   

10.
Renal specimens from 6 mink with encephalitozoonosis were studied by light and electron microscopy and immunohistochemistry. The glomeruli of affected kidneys had a mesangioproliferative glomerulonephritis which was characterized by an increase in mesangial cells and matrix in most glomeruli. Some glomeruli were partially or completely sclerosed. There were protein or granular casts in the cortical and medullary tubules. Interstitial nephritis, vasculitis and tubular cysts were found. Electron microscopy demonstrated extensive matrix and increased cellularity in the mesangial areas. Glomeruli showed segmentally thickened or wrinkled capillary basement membranes. Electron dense deposits were found in the glomerular basement membranes and mesangium. Peroxidase-anti-peroxidase immunohistochemistry demonstrated that IgG and IgM positive material was present as granular deposits in the glomerular basement membrane and occasionally in the mesangium.  相似文献   

11.
Affinity-purified rabbit antibodies specific for two large noncollagenous gycoproteins--laminin and fibronectin--were used to study the distribution of these proteins in normal murine kidneys. Immunofluorescence staining of conventional frozen sections demonstrates fibronectin within mesangial areas of the glomerulus. Laminin is also found in mesangial areas. However, it also appears to be distributed in typical basement membranelike patterns on glomerular and tubular basement membranes and Bowman's capsule. At the ultrastructural level, by labeling 600-800-A thick frozen sections with a three-stage procedure consisting of specific antibodies, biotinyl sheep anti-rabbit IgG, and avidin-ferritin conjugates, fibronectin is present ony in the mesangial matrix and is specifically localized to areas immediately surrounding mesangial cell processes. Laminin, on the other hand, is found uniformly distributed throughout tubular basement membranes, the mesangial matrix, and Bowman's capsule. In glomerular basement membranes, laminin labeling is restricted to the lamina rara interna and adjacent regions of the lamina densa.  相似文献   

12.
In the testis, the base of the Sertoli cells is in contact with the basement membrane matrix, in which the laminins constitute the major noncollagenous components. We have previously demonstrated that antibodies against a preparation enriched in basement membranes of seminiferous tubules (STBM) or a noncollagenous fraction of STBM passively transferred induced modifications to the basement membranes and focal sloughing of the seminiferous epithelium in the rat. In the present report, we tested the effect of passive immunization with anti-laminin IgG on the limiting membrane of the seminiferous tubules, spermatogenesis, and maintenance of the blood-testis barrier in the adult guinea pig. Rabbit antibodies to laminin 1 (IgG fraction) were injected in adult male guinea pigs (GP). Nonimmunized GP and GP immunized with normal rabbit serum IgG were used as controls. Measurements of variations in the diameter and lumen of the tubules and in the size of individual components of the tubular limiting membrane showed that the highest percentage of tubules with reduced lumen occurred 30 days after passive immunization with anti-laminin, when the limiting membrane was thickest and lesions to the seminiferous epithelium were most severe. The lesions included thickening of the limiting membrane, infolding in the basal lamina, deposits of immune complexes coincident with sloughing of pachytene spermatocytes and spermatids, and vacuolization of the Sertoli cells. Mononuclear cell infiltration of the tubules was rare. Permeability tracer studies revealed that Sertoli cell tight junctions remained impermeable. Fifty and 80 days after treatment, the basement membrane of the tubules and the progression of the spermatogenesis were normal. Passive immunization with anti-laminin IgG provided a valuable experimental model for the in vivo study of the influence of the basement membrane on the issue of spermatogenesis and the integrity of the seminiferous epithelium.  相似文献   

13.
Summary Congenital nephrosis of the Finnish type (CNF) is a hereditary renal disease of unknown aetiology manifested by massive proteinuria of the newborn and unresponsive to any treatment. In this study kidney samples and cultured glomerular mesangial cells from five patients with CNF were studied by indirect immunofluorescence microscopy for the presence and location of major basement membrane matrix (GBM) components. Histological changes of glomeruli ranging from mild thickening of basement membranes to total obliteration and sclerosis were seen. Notably, thickening of the subepithelial layer of Bowman's capsules was regularly seen along with hypercellularity at the juxtaglomerular areas. The matrix components studied (laminin, plasma- and cellular fibronectin, type IV collagen, including the NC-1, alpha-1 and alpha-3 chains, heparan sulphate proteoglycan (HSPG) core protein, thrombospondin) were characteristically seen within the glomeruli. Local thickenings alternating with total loss of epitopes along the GBM were seen, especially with anti-type IV collagen and anti-HSPG antibodies. Sera from CNF patients after transplantation failed to show antibodies against GBM structures in immunofluorescence microscopy, suggesting that no missing epitopes of GBM are introduced with the transplant kidney. Cultured mesangial cells of CNF glomeruli also showed continued in vitro production of the matrix components and their incorporation into the matrix underneath the cell layer.  相似文献   

14.
 Podocytes outgrown from isolated glomeruli in vitro have failed to express fully differentiated in vivo phenotypes. In an attempt to determine whether podocytes in metanephric culture accomplish terminal differentiation, as observed in vivo, we investigated expression of their characteristic phenotypic features in rat metanephric organ cultures using immunohistochemistry and electron microscopy. Rat metanephroi were harvested on embryonic day 12.5 and cultured on transmembrane filters for 9 days. Morphological examination revealed two maturation stages when the podocytes resembled those of the S-shaped body stage and maturational stages of glomeruli in vivo. Electron microscopy revealed that, firstly podocytes lost their intercellular contacts and, simultaneously, the tight junctions shifted into close proximity to cell bases, followed by foot process development. Immunohistochemistry demonstrated that the tight junction protein, ZO-1, and specific podocytic markers, pp44, 5-1–6, podocalyxin and vimentin were expressed in a cell maturity-dependent manner, as observed in newborn rat kidneys. Furthermore, glomerular basement membrane components, collagen type IV and laminin, were expressed in the glomerular center. Our findings that cell maturity-dependent expression of structural and functional phenotypes in podocytes in metanephric culture was the same as that observed in developing kidneys in vivo indicate that podocyte differentiation during glomerulogenesis may be operated by an intrinsic property, such as programmed cell fate. Furthermore, these highly differentiated podocytes in vitro may provide clues that will help to establish a podocyte culture system. Accepted: 26 February 1997  相似文献   

15.
The kidney filtration barrier consists of the capillary endothelium, the glomerular basement membrane and the slit diaphragm localized between foot processes of neighbouring podocytes. We report that collagen XVII, a transmembrane molecule known to be required for epithelial adhesion, is expressed in podocytes of normal human and mouse kidneys and in endothelial cells of the glomerular filtration barrier. Immunoelectron microscopy has revealed that collagen XVII is localized in foot processes of podocytes and in the glomerular basement membrane. Its role in kidney has been analysed in knockout mice, which survive to birth but have high neonatal mortality and skin blistering and structural abnormalities in their glomeruli. Morphometric analysis has shown increases in glomerular volume fraction and surface densities of knockout kidneys, indicating an increased glomerular amount in the cortex. Collagen XVII deficiency causes effacement of podocyte foot processes; however, major slit diaphragm disruptions have not been detected. The glomerular basement membrane is split in areas in which glomerular and endothelial basement membranes meet. Differences in the expression of collagen IV, integrins α3 or β1, laminin α5 and nephrin have not been observed in mutant mice compared with controls. We propose that collagen XVII has a function in the attachment of podocyte foot processes to the glomerular basement membrane. It probably contributes to podocyte maturation and might have a role in glomerular filtration.  相似文献   

16.
We propose here the use of freeze-fracture to gain access and to label in vitro glomerular components and locate WGA receptors and anionic sites. Tissues are frozen, fractured under liquid nitrogen, and thawed. Freeze-fracture rendered all glomerular structures directly accessible to the reagents. This made possible study of the nature and topology of cationized ferritin and WGA binding sites. WGA-gold complexes were observed over plasma membranes of podocytes and of endothelial and mesangial cells. Labeling of podocytes and endothelial cells was similar in the mesangial area and in the peripheral part of the capillary loop. Cross-fractures of extracellular matrices showed that WGA bound uniformly to the glomerular basement membrane (GBM) as well as to mesangial matrix. In fractured specimens treated with neuraminidase, WGA was no longer observed over podocytes but it consistently labeled the surface of endothelial and mesangial cells. Whereas in GBM cross-sections WGA binding was greatly reduced or even abolished, it remained unmodified in the mesangium. This shows that only NeuNAc (sialic acid) might account for the binding of WGA to podocytes, whereas GlcNAcs appear to be the main WGA binding sites on endothelial and mesangial cells and in the mesangial matrix. Both NeuNAc and GLcNAc residues are probably associated in GBM. With cationized ferritin (pI 8.3) at pH 7.4, intense, continuous labeling was seen all over the different plasma membranes, denser in podocytes than in endothelial cells. CF was also observed in cross-fractured profiles of extracellular matrices and never appeared agglutinated in discrete sites.  相似文献   

17.
Laminin α5 is required for kidney glomerular basement membrane (GBM) assembly, and mice with targeted deletions of the Lama5 gene fail to form glomeruli. As a tool to begin to understand factors regulating the expression of the LAMA5 gene, we generated transgenic mice carrying the human LAMA5 locus in a bacterial artificial chromosome. These mice deposited human laminin α5 protein into basement membranes in heart, liver, spleen and kidney. Here, we characterized two lines of transgenics; Line 13 expressed ~6 times more LAMA5 than Line 25. Mice from both lines were healthy, and kidney function and morphology were normal. Examination of developing glomeruli from fetal LAMA5 transgenics showed that the human transgene was expressed at the correct stage of glomerular development, and deposited into the nascent GBM simultaneously with mouse laminin α5. Expression of human LAMA5 did not affect the timing of the mouse laminin α1-α5 isoform switch, or that for mouse laminin β1-β2. Immunoelectron microscopy showed that human laminin α5 originated in both glomerular endothelial cells and podocytes, known to be origins for mouse laminin α5 normally. Notably, in neonatal transgenics expressing the highest levels of human LAMA5, there was a striking reduction of mouse laminin α5 protein in kidney basement membranes compared to wildtype, and significantly lower levels of mouse Lama5 mRNA. This suggests the presence in kidney of a laminin expression monitor, which may be important for regulating the overall production of basement membrane protein.  相似文献   

18.
In developing glomeruli, laminin alpha5 replaces laminin alpha1 in the glomerular basement membrane (GBM) at the capillary loop stage, a transition required for glomerulogenesis. To investigate domain-specific functions of laminin alpha5 during glomerulogenesis, we produced transgenic mice that express a chimeric laminin composed of laminin alpha5 domains VI through I fused to the human laminin alpha1 globular (G) domain, designated Mr51. Transgene-derived protein accumulated in many basement membranes, including the developing GBM. When bred onto the Lama5 -/- background, Mr51 supported GBM formation, preventing the breakdown that normally occurs in Lama5 -/- glomeruli. In addition, podocytes exhibited their typical arrangement in a single cell layer epithelium adjacent to the GBM, but convolution of glomerular capillaries did not occur. Instead, capillaries were distended and exhibited a ballooned appearance, a phenotype similar to that observed in the total absence of mesangial cells. However, here the phenotype could be attributed to the lack of mesangial cell adhesion to the GBM, suggesting that the G domain of laminin alpha5 is essential for this adhesion. Analysis of an additional chimeric transgene allowed us to narrow the region of the alpha5 G domain essential for mesangial cell adhesion to alpha5LG3-5. Finally, in vitro studies showed that integrin alpha3beta1 and the Lutheran glycoprotein mediate adhesion of mesangial cells to laminin alpha5. Our results elucidate a mechanism whereby mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the GBM.  相似文献   

19.
Sulfated glycosaminoglycans and sialoglycoproteins are thought to play a pivotal role in the glomerular capillary wall barrier to filtration since these anionic charged elements are important in the maintenance of capillary wall integrity and constitute a charge-selective filter. The development of proteinuria in puromycin aminonucleoside (PAN) nephrosis is associated with polyanion loss from the glomerular capillary wall structures. Since in PAN nephrosis the permeability of the mesangial area to plasma proteins and tracer substances has also been shown to be increased, the purpose of this study was to analyse the localization and distribution of anionic charges in the glomerular mesangium in this experimental model. Glycosaminoglycans were labeled by perfusion of the kidneys with ruthenium red solution (RR). Electron microscopic examination revealed the presence of distinct small RR granules ("anionic sites") in the mesangial intercellular matrix substance and in the laminae rarae of the glomerular basement membrane (GBM). The center-to-center spacing of the granules was measured and a frequency distribution of intervals in different interval classes was constructed. In normal glomeruli the anionic sites in the mesangial matrix showed a distribution pattern identical to the GBM with a maximal interval incidence at the 31-40 nm class. In nephrotic rats anionic site distributions in matrix and GBM did not change significantly. Sialoglycoproteins were labeled with colloidal iron (CI). In PAN nephrosis a decrease of CI binding was observed at the epithelial-basement membrane junction of the glomerular capillary wall. However, CI labeling of the mesangial matrix and mesangial cell membranes did not differ from that of normal glomeruli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Summary Laminin biosynthesis and basement membrane assembly in anterior pituitary glands of gonadectomized rats were studied by immuno-electron microscopy and radioimmunoassay. Three weeks after gonadectomy, rats received intravenous injections of sheep anti-laminin IgG conjugated to horseradish peroxidase, and glands were fixed and processed for microscopy 1 h later. Peroxidase reaction product uniformly labeled all perivascular and glandular epithelial basement membranes. In addition, reaction product was also found in abnormally multi-layered basement membranes seen especially beneath gonadotrophs, and unusual basement membrane-like structures projecting between gonadotrophs were also labeled. Pituitary sections from gonadectomized rats labeled with pre-embedding immunoperoxidase and post-embedding immungold techniques also localized intracellular laminin within biosynthetic organelles and light body vesicles of gonadotrophs. Neither abnormal basement membrane structures nor intracellular laminin were detected in pituitaries of nongonadectomized, control rats. Radioimmunoassays of pituitary homogenates showed nearly twice as much soluble laminin ( 15 ng/gland) in gonadectomized rats than in controls ( 8 ng/gland), which paralleled gland growth, but serum laminin concentrations did not differ ( 10 ng/ml in both groups). When anterior pituitary glands of gonadectomized rats that received injections of anti-laminin IgG-HRP were fixed 5 days after injection, lengths of unlabeled basement membrane were distributed between labeled lengths. This indicated that new basement membrane was spliced into old by a process similar to that seen in normal development. Supplementation of gonadectomized rats with testosterone, however, arrested laminin biosynthesis and basement membrane assembly and reversed glandular hypertrophy. These results indicate that, in an absence of sex hormone feedback, renewed synthesis of basement membrane components occurs in the anterior pituitary and is probably necessary to support the additional growth and differentiation of gonadotrophs and other pituitary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号