首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
This is the first structural evidence of alpha-tocopherol (alpha-TP) as a possible candidate against inflammation, as it inhibits phospholipase A2 specifically and effectively. The crystal structure of the complex formed between Vipera russelli phospholipase A2 and alpha-tocopherol has been determined and refined to a resolution of 1.8 A. The structure contains two molecules, A and B, of phospholipase A2 in the asymmetric unit, together with one alpha-tocopherol molecule, which is bound specifically to one of them. The phospholipase A2 molecules interact extensively with each other in the crystalline state. The two molecules were found in a stable association in the solution state as well, thus indicating their inherent tendency to remain together as a structural unit, leading to significant functional implications. In the crystal structure, the most important difference between the conformations of two molecules as a result of their association pertains to the orientation of Trp31. It may be noted that Trp31 is located at the mouth of the hydrophobic channel that forms the binding domain of the enzyme. The values of torsion angles (phi, psi, chi(1) and chi(2)) for both the backbone as well as for the side-chain of Trp31 in molecules A and B are -94 degrees, -30 degrees, -66 degrees, 116 degrees and -128 degrees, 170 degrees, -63 degrees, -81 degrees, respectively. The conformation of Trp31 in molecule A is suitable for binding, while that in B hinders the passage of the ligand to the binding site. Consequently, alpha-tocopherol is able to bind to molecule A only, while the binding site of molecule B contains three water molecules. In the complex, the aromatic moiety of alpha-tocopherol is placed in the large space at the active site of the enzyme, while the long hydrophobic channel in the enzyme is filled by hydrocarbon chain of alpha-tocopherol. The critical interactions between the enzyme and alpha-tocopherol are generated between the hydroxyl group of the six-membered ring of alpha-tocopherol and His48 N(delta1) and Asp49 O(delta1) as characteristic hydrogen bonds. The remaining part of alpha-tocopherol interacts extensively with the residues of the hydrophobic channel of the enzyme, giving rise to a number of hydrophobic interactions, resulting in the formation of a stable complex.  相似文献   

2.
Selenocysteine (Sec) insertion sequence-binding protein 2 (SBP2) is essential for the biosynthesis of Sec-containing proteins, termed selenoproteins. Subjects with mutations in the SBP2 gene have decreased levels of several selenoproteins, resulting in a complex phenotype. Selenoproteins play a significant role in antioxidative defense, and deficiencies in these proteins can lead to increased oxidative stress. However, lipid peroxidation and the effects of antioxidants in subjects with SBP2 gene mutations have not been studied. In the present study, we evaluated the lipid peroxidation products in the blood of a subject (the proband) with mutations in the SBP2 gene. We found that the proband had higher levels of free radical-mediated lipid peroxidation products, such as 7β-hydroxycholesterol, than the control subjects. Treatment of the proband with vitamin E (α-tocopherol acetate, 100 mg/day), a lipid-soluble antioxidant, for 2 years reduced lipid peroxidation product levels to those of control subjects. Withdrawal of vitamin E treatment for 7 months resulted in an increase in lipid peroxidation products. Collectively, these results clearly indicate that free radical-mediated oxidative stress is increased in the subject with SBP2 gene mutations and that vitamin E treatment effectively inhibits the generation of lipid peroxidation products.  相似文献   

3.
Aneuploidy is associated with spontaneous abortions, birth defects, and many types of human cancers. Currently there are few assays developed for the efficient detection of aneuploidy in vivo. However, with the recent availability of chromosome-specific DNA probes for the rat, fluorescence in situ hybridization (FISH) techniques could be used for the rapid and sensitive detection of aneuploidy in different tissue and cell types. In order to develop a system that can detect alterations in chromosome number in rat cells in vitro, we treated cultured rat lymphocytes with three aneugens-noscapine hydrochloride (0–150 μM) and vincristine and vinblastine sulfate (0–0.06 μM). 5-Bromo-2-deoxyuridine (BrdU; 1 μM) was added to the culture medium to allow proliferating and non-proliferating cells to be distinguished. To test this assay under in vivo conditions, 21-day-old male Sprague–Dawley rats were subcutaneously implanted with osmotic pumps that delivered BrdU (12 mg/kg per day) continuously. These rats were administered vinblastine sulfate (0, 0.5 and 1 mg/kg) by intraperitoneal injection. The rat lymphocytes and hepatocytes incorporating BrdU were detected by immuno-fluorescent labeling, and FISH with a rat chromosome 4 probe was performed on the labeled and unlabeled cells. Highly significant increases in hyperdiploidy were seen in the replicating rat lymphocytes treated with noscapine, vincristine or vinblastine in vitro and in the rat hepatocytes treated with vinblastine in vivo. In contrast, no significant increase in hyperdiploidy was observed in the non-replicating cells. These results demonstrate that this BrdU-enhanced FISH assay with chromosome-specific rat probes can be used to efficiently detect numerical chromosomal aberrations in vitro and in vivo in slowly or moderately replicating rat tissues. The combination of BrdU-labeling and FISH allows the scoring of hyperdiploidy to be focused on the actively replicating cells, thereby increasing the sensitivity of the FISH technique.  相似文献   

4.
5.
Extracellular nucleotides acting via P2 receptors play important roles in cardiovascular physiology/pathophysiology. Pyrimidine nucleotides activate four G protein-coupled P2Y receptors (P2YRs): P2Y2 and P2Y4 (UTP-activated), P2Y6, and P2Y14. Previously, we showed that uridine 5′-triphosphate (UTP) activating P2Y2R reduced infarct size and improved mouse heart function after myocardial infarct (MI). Here, we examined the cardioprotective role of P2Y2R in vitro and in vivo following MI using uridine-5′-tetraphosphate δ-phenyl ester tetrasodium salt (MRS2768), a selective and more stable P2Y2R agonist. Cultured rat cardiomyocytes pretreated with MRS2768 displayed protection from hypoxia [as revealed by lactate dehydrogenase (LDH) release and propidium iodide (PI) binding], which was reduced by P2Y2R antagonist, AR-C118925 (5-((5-(2,8-dimethyl-5H-dibenzo[a,d][7]annulen-5-yl)-2-oxo-4-thioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-N-(1H-tetrazol-5-yl)furan-2-carboxamide). In vivo, echocardiography and infarct size staining of triphenyltetrazolium chloride (TTC) in 3 groups of mice 24 h post-MI: sham, MI, and MI+MRS2768 indicated protection. Fractional shortening (FS) was higher in MRS2768-treated mice than in MI alone (40.0 ± 3.1 % vs. 33.4 ± 2.7 %, p < 0.001). Troponin T and tumor necrosis factor-α (TNF-α) measurements demonstrated that MRS2768 pretreatment reduced myocardial damage (p < 0.05) and c-Jun phosphorylation increased. Thus, P2Y2R activation protects cardiomyocytes from hypoxia in vitro and reduces post-ischemic myocardial damage in vivo.  相似文献   

6.
The p21-activated kinases (PAKs) are important effector proteins of the small GTPases Cdc42 and Rac and control cytoskeletal rearrangements and cell proliferation. The direct interaction of PAKs with guanine nucleotide exchange factors from the PIX/Cool family, which is responsible for the localization of PAK kinases to focal complexes in the cell, is mediated by a 24-residue peptide segment in PAKs and an N-terminal src homology 3 (SH3) domain in PIX/Cool. The SH3-binding segment of PAK contains the atypical consensus-binding motif PxxxPR, which is required for unusually high affinity binding. In order to understand the structural basis for the high affinity and specificity of the PIX-PAK interaction, we solved crystal structures for the N-terminal SH3 domain of betaPIX and for the complex of the atypical binding segment of PAK2 with the N-terminal SH3 domain of betaPIX at 0.92 A and 1.3A resolution, respectively. The asymmetric unit of the crystal contains two SH3 domains and two peptide ligands. The bound peptide adopts a conformation that allows for intimate contacts with three grooves on the surface of the SH3 domain that lie between the n-Src and RT-loops. Most notably, the arginine residue of the PxxxPR motif forms a salt-bridge and is tightly coordinated by a number of residues in the SH3 domain. This arginine-specific interaction appears to be the key determinant for the high affinity binding of PAK peptides. Furthermore, C-terminal residues of the peptide engage in additional interactions with the surface of the RT-loop, which significantly increases binding specificity. Compared to a recent NMR structure of a similar complex, our crystal structure reveals an alternate binding mode. Finally, we compare our crystal structure with the recently published betaPIX/Cbl-b complex structure, and suggest the existence of a molecular switch.  相似文献   

7.
8.
9.
The aim of the study is to clarify the effect of ghrelin treatment on the messenger RNA (mRNA) expression of the cannabinoid receptor 1 (Cnr1/CB1) and glucagon‐like peptide 1 receptor (Glp1r/GLP‐1R) as well as microRNAs (miR)‐122 and miR‐33a in the liver of rats with type 2 diabetes mellitus (T2DM). Adult Sprague‐Dawley rats were divided into three groups: control (n = 7), T2DM (n = 7), and treatment (n = 7). Control animals received tap water. T2DM was induced by feeding 10% fructose in drinking water for 2 weeks followed by a single injection of streptozotocin (40 mg/kg, intraperitoneally [IP]). In the treatment group, diabetic rats were injected ghrelin (25 μg/kg, IP) for 14 days. Serum lipid profiles were evaluated, and mRNA expression levels of Cnr1 and Glp1r in the liver were detected using quantitative real‐time polymerase chain reaction (RT‐qPCR). In addition, miR‐122 and miR‐33a levels were measured using RT‐qPCR. Serum triglycerides, low‐density lipoprotein cholesterol, and very‐low‐density lipoprotein cholesterol significantly increased in the T2DM group compared with control rats but ghrelin treatment showed no effect on serum lipid levels. The mRNA expression levels of Cnr1 and Glp1r decreased in the T2DM group compared with the control group. These reductions were significantly increased in the T2DM group treated with ghrelin. Furthermore, the increase in miR‐33a expression level was reduced in the treatment group compared to rats with T2DM. Our findings suggested that ghrelin treatment may alter the mRNA expression levels of CB1 and GLP‐1R in the liver of rats with T2DM. The mRNA levels of Cnr1 and Glp1r may inversely correlate with the expression level of miR‐33a but not miR‐122.  相似文献   

10.
The three disulfide bonds of the gene-3-protein of the phage fd are essential for the conformational stability of this protein, and it unfolds when they are removed by reduction or mutation. Previously, we used an iterative in vitro selection strategy to generate a stable and functional form of the gene-3-protein without these disulfides. It yielded optimal replacements for the disulfide bonds as well as several stabilizing second-site mutations. The best selected variant showed a higher thermal stability compared with the disulfide-bonded wild-type protein. Here, we investigated the molecular basis of this strong stabilization by solving the crystal structure of this variant and by analyzing the contributions to the conformational stability of the selected mutations individually. They could mostly be explained by improved side-chain packing. The R29W substitution alone increased the midpoint of the thermal unfolding transition by 14 deg and the conformational stability by about 25 kJ mol− 1. This key mutation (i) removed a charged side chain that forms a buried salt bridge in the disulfide-containing wild-type protein, (ii) optimized the local packing with the residues that replace the C46-C53 disulfide and (iii) improved the domain interactions. Apparently, certain residues in proteins indeed play key roles for stability.  相似文献   

11.
The involvement of macrophages in the adjuvanticity of N-acetyl-muramyl-L-alanyl-D-isoglutamine (MDP) has been examined. The stimulation of the in vitro primary immune response to sheep red blood cells (SRBC) has been studied, because it is known that macrophages cooperate through the mediation of soluble compounds for the induction of the anti-SRBC response. The cultures depleted of macrophages by passing spleen cells on Sephadex G-10 were unable to give any response to SRBC. Their immune responsiveness was fully restored by the addition of either Interleukine 1 (IL 1) obtained from P388D1 cells or a factor able to replace macrophages (FRM) obtained from resident peritoneal macrophages. MDP alone, at any dose, was unable to induce any response in such macrophage depleted cultures, but it was able to enhance the antibody response of these cultures reconstituted with monokines, with the same characteristics in dose effect and timing dependence than in whole spleen cells.  相似文献   

12.
Although it is recognized that ATP plays a part in apoptosis, whether and how its level changes en route to apoptosis as well as how ATP is synthesized has not been fully investigated. We have addressed these questions using cultured cerebellar granule cells. In particular, we measured the content of ATP, ADP, AMP, IMP, inosine, adenosine and l-lactate in cells undergoing apoptosis during the commitment phase (0-8 h) in the absence or presence of oligomycin or/and of citrate, which can inhibit totally the mitochondrial oxidative phosphorylation and largely the substrate-level phosphorylation in glycolysis, respectively. In the absence of inhibitors, apoptosis was accompanied by an increase in ATP and a decrease in ADP with 1:1 stoichiometry, with maximum ATP level found at 3 h apoptosis, but with no change in levels of AMP and its breakdown products and with a relatively low level of l-lactate production. Consistently, there was an increase in the cell energy charge and in the ratio ([ATP][AMP])/[ADP]2. When the oxidative phosphorylation was completely blocked by oligomycin, a decrease of the ATP content was found both in control cells and in cells undergoing apoptosis, but nonetheless cells still died by apoptosis, as shown by checking DNA laddering and by death prevention due to actinomycin D. In this case, ATP was provided by anaerobic glycolysis, as suggested by the large increase of l-lactate production. On the other hand, citrate itself caused a small decrease in ATP level together with a huge decrease in l-lactate production, but it had no effect on cell survival. When ATP level was further decreased due to the presence of both oligomycin and citrate, death occurred via necrosis at 8 h, as shown by the lack of DNA laddering and by death prevention found due to the NMDA receptor antagonist MK801. However, at a longer time, when ATP level was further decreased, cells died neither via apoptosis nor via glutamate-dependent necrosis, in a manner similar to something like to energy catastrophe. Our results shows that cellular ATP content increases in cerebellar granule cell apoptosis, that the role of oxidative phosphorylation is facultative, i.e. ATP can also derive from anaerobic glycolysis, and that the type of cell death depends on the ATP availability.  相似文献   

13.
The gene for a membrane-bound, halophilic, and thermostable α-amylase, AmyB, from Halothermothrix orenii was cloned and sequenced. The crystal structure shows that, in addition to the typical domain organization of family 13 glycoside hydrolases, AmyB carries an additional N-terminal domain (N domain) that forms a large groove—the N-C groove—some 30 Å away from the active site. The structure of AmyB with the inhibitor acarbose at 1.35 Å resolution shows that a nonasaccharide has been synthesized through successive transglycosylation reactions of acarbose. Unexpectedly, in a complex of wild-type AmyB with α-cyclodextrin and maltoheptaose at 2.2 Å resolution, a maltotetraose molecule is bound in subsites − 1 to + 3, spanning the cleavage point at − 1/+ 1, with the − 1 glucosyl residue present as a 2So skew boat. This wild-type AmyB complex was obtained in the presence of a large excess of substrate, a condition under which it is possible to capture Michaelis complexes, which may explain the observed binding across − 1/+ 1 and ring distortion. We observe three methionine side chains that serve as “binding platforms” for glucosyl rings in AmyB, a seemingly rare occurrence in carbohydrate-binding proteins. The structures and results from the biochemical characterization of AmyB and AmyB lacking the N domain show that the N domain increases binding of the enzyme to raw starch. Furthermore, theoretical modeling suggests that the N-C groove can accommodate, spatially and chemically, large substrates such as A-starch.  相似文献   

14.
A phase II trial was conducted in subjects with human papillomavirus (HPV) associated high-grade cervical dysplasia testing the safety and efficacy of a microparticle encapsulated pDNA vaccine. Amolimogene expresses T cell epitopes from E6 and E7 proteins of HPV types 16 and 18. An analysis was performed on a subset of HLA-A2+ subjects to test whether CD8+ T cells specific to HPV 16, 18, 6 and 11 were increased in response to amolimogene immunization. Of the 21 subjects receiving amolimogene, 11 had elevated CD8+ T cell responses to HPV 16 and/or 18 peptides and seven of these also had increases to corresponding HPV 6 and/or 11 peptides. In addition, T cells primed and expanded in vitro with an HPV 18 peptide demonstrated cross-reactivity to the corresponding HPV 11 peptide. These data demonstrate that treatment with amolimogene elicits T cell responses to HPV 16, 18, 6 and 11.  相似文献   

15.
D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号