首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characterization of three bacterial strains isolated from cultured oysters and seawater at the Spanish Mediterranean coast has been performed. Strains were phenotypically and genetically characterized and the results led us to identify them as members of the genus Marinomonas. A phylogenetic analysis based on the almost complete 16S rDNA sequences clustered all three strains together (with sequence similarities around 99.8%) in the vicinity of M. communis and M. vaga sequences and distantly related to the other four species of the genus. The most closely related species was M. communis that shared 97.4-97.6% with the Mediterranean strains. DNA-DNA hybridizations were performed to clarify the taxonomic position of our isolates and the results confirmed their specific isolation, with interspecific binding ratios below 59%. We propose the bacteria to constitute a new Marinomonas species, i.e. M. aquamarina and strain 11SM4T (CECT 5080T, CIP 108405T, CCUG 49439T) as the type strain.  相似文献   

2.
As part of a study carried out for detecting Arcobacter spp. in shellfish, three mussel isolates that were Gram-negative slightly curved rods, non-spore forming, showed a new 16S rDNA-RFLP pattern with a specific identification method for the species of this genus. Sequences of the 16S rRNA gene and those of the housekeeping genes rpoB, gyrB and hsp60 provided evidence that these mussel strains belonged to an unknown genetic lineage within the genus Arcobacter. The similarity between the 16S rRNA gene sequence of the representative strain (F79-6T) and type strains of the other Arcobacter species ranged between 94.1% with A. halophilus and 99.1% with the recently proposed species A. defluvii (CECT 7697T). DDH results between strain F79-6T and the type strain of the latter species were below 70% (53 ± 3.0%). Phenotypic characteristics together with MALDITOF mass spectra differentiated the new mussel strains from all other Arcobacter species. All the results indicate that these strains represent a new species, for which the name Arcobacter ellisii sp. nov. with the type strain F79-6T (=CECT 7837T = LMG 26155T) is proposed.  相似文献   

3.
In this study two actinomycete strains were isolated in Cape Town (South Africa), one from a compost heap (strain 202GMOT) and the other from within the fynbos-rich area surrounded by the horseracing track at Kenilworth Racecourse (strain C2). Based on 16S rRNA gene sequence BLAST analysis, the strains were identified as members of the genus Nocardia. Phylogenetic analysis showed that the strains clustered together and are most closely related to Nocardia flavorosea NRRL B-16176T, Nocardia testacea JCM 12235T, Nocardia sienata IFM 10088T and Nocardia carnea DSM 43397T. This association was also supported by gyrB based phylogenetic analysis. The results of DNA–DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of both strains 202GMOT and C2 from related species. However, their high DNA relatedness showed that they belong to the same species. Strain 202GMOT was selected as the type strain to represent this novel species, for which the name Nocardia rhamnosiphila is proposed (=DSM 45147T = NRRL B-24637T).  相似文献   

4.
A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.  相似文献   

5.
Three novel isolates of haloalkaliphilic archaea, strains IHC-005T, IHC-010, and N-1311T, from soda lakes in Inner Mongolia, China, were characterized to elucidate their taxonomic positions. The three strains were aerobic, Gram-negative chemoorganotrophs growing optimally at 37–45°C, pH 9.0–9.5, and 15–20% NaCl. Cells of strains IHC-005T/IHC-010 were motile rods, while those of strain N-1311T were non-motile pleomorphic flats or cocci. The three strains contained diphytanyl and phytanyl-sesterterpanyl diether derivatives of phosphatidylglycerol and phosphatidylglycerophosphate methyl ester. No glycolipids were detected. On phylogenetic analysis of 16S rRNA gene sequences, they formed an independent cluster in the Natro group of the family Halobacteriaceae. Comparison of their morphological, physiological, and biochemical properties, DNA G+C content and 16S rRNA gene sequences, and DNA-DNA hybridization study support the view that strains IHC-005T/IHC-010 and strain N-1311T represent separate species. Therefore, we propose Natronolimnobius baerhuensis gen. nov., sp. nov. for strains IHC-005T (=CGMCC 1.3597T =JCM 12253T)/IHC-010 (=CGMCC 1.3598=JCM 12254) and Natronolimnobius innermongolicus sp. nov. for N-1311T (=CGMCC 1.2124T =JCM 12255T).  相似文献   

6.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

7.
In this study we analysed three bacterial strains coded L10.10T, A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993T. Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4–30 °C, and at pH 4.0–10. The DNA G+C content is 58.2–58.3 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10T, A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10T (LMG 29628T, DSM 101070T).  相似文献   

8.
Six isolates of novel marine myxobacteria, designated strains SHK-1T, SMK-1-1, SMK-1-3, SMK-10, SKK-2, and SMP-6, were obtained from various coastal samples (mud, sands and algae) collected around Japan. All of the isolates had Gram-negative rod-shaped cells, motile by gliding and grew aerobically. They showed bacteriolytic action, fruiting body formation, and NaCl requirement for growth with an optimum concentration of 1.0-2.0% (w/v). In addition, divalent cationic components of seawater, such as Mg2+ or Ca2+, were also needed for growth. The major respiratory quinone was MK-7. The G+C content of genomic DNA ranged from 65.6 to 67.4 mol% (by HPLC). The isolates shared almost identical 16S rDNA sequences, and clustered with a recently described marine myxobacterium, Plesiocystis pacifica, as their closest relative on a phylogenetic tree (95.9-96.0% similarity). Physiological and chemotaxonomic differences between the new strains and strains of the genus Plesiocystis justify the proposal of a new genus. Therefore, we propose to classify the six isolates into a new taxon of marine myxobacteria with the name, Enhygromyxa salina gen. nov., sp. nov. The type strain is SHK-1(T) (JCM 11769(T) = DSM 15217(T) = AJ 110011(T)).  相似文献   

9.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

10.
A novel aerobic, Gram-negative, non-pigmented bacterium, GCM72(T), was isolated from the alkaline, low-saline ikaite columns in the Ikka Fjord, SW Greenland. Strain GCM72(T) is a motile, non-pigmented, amylase- and protease-producing, oxidase-positive, and catalase-negative bacterium, showing optimal growth at pH 9.2-10.0, at 15 degrees C, and at 3% (w/v) NaCl. Major fatty acids were C(12:0) 3-OH (12.2+/-0.1%), C(16:00) (18.0+/-0.1%), C(18:1)omega7c (10.7+/-0.5%), and summed feature 3 comprising C(16:1)omega7c and/or iso-C(15:0) 2-OH (36.3+/-0.7%). Phylogenetic analysis based on 16S rRNA gene sequences showed that isolate GCM72(T) was most closely related to Rheinheimera baltica and Alishewanella fetalis of the gamma-Proteobacteria with a 93% sequence similarity to both. The G+C content of DNA isolated from GCM72(T) was 49.9mol% and DNA-DNA hybridization between GCM72T and R. baltica was 9.5%. Fatty acid analysis and G+C content supports a relationship primarily to R. baltica, but several different features, such as a negative catalase-response and optimal growth at low temperature and high pH, together with the large phylogenetic distance and low DNA similarity to its closest relatives, lead us to propose a new genus, Arsukibacterium, gen. nov., with the new species Arsukibacterium ikkense sp. nov. (type strain is GCM72(T)).  相似文献   

11.
Four yellow-pigmented, gram-negative, chemoorganotrophic aerobic bacteria were isolated from starfish Stellaster equestris (strains 022-2-10T, 022-2-9, and 022-2-12) and soft coral (unidentified species) (strain 022-4-7) collected in the South China Sea. 16S rRNA gene sequence-based analyses of the new organisms revealed that Erythrobacter spp. were the closest relatives and shared the highest similarity of 98.7% to E. citreus, 98.5% to E. flavus, 97.9% to E. litoralis and 97.6% to E. longus. The novel organisms were tolerant to 3-6% NaCl, grew between 10 degrees C and 40 degrees C, and were not able to degrade gelatin, casein, and agar, while degraded Tween 80. Two strains (022-2-9 and 022-2-12) could weakly degrade starch. All strains produced a large pool of carotenoids and did not have Bacteriochlorophyll a. Phosphatidylethanolamine (30-36%), phosphatidylglycerol (39-46%), and phosphatidylcholine (21-27%) were the predominant phospholipids. Sphingoglycolipid was not detected. The major fatty acids were 16:0 (6-11%), 16:1omega7 (12-15%), and 18:1omega7 (46-49%). The two-hydroxy fatty acids, 13:0-2OH, 14:0-2OH, 15:0-2OH, 16:0-2OH were also present. The G + C content of the DNAs ranged from 61 to 62 mol%. The level of DNA similarity among four strains was conspecific and ranged from 94% to 98%. Even though new strains and other species of the genus had rather high level of 16S rRNA gene sequence similarities, DNA-DNA hybridization experiments showed only 33-39% of binding with the DNA of the type strains. On the basis of these results and the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the new organisms be classified as a novel species; the name Erythrobacter vulgaris sp. nov. is proposed. The type strain is 022-2-10T (= KMM 3465T = CIP 107841T).  相似文献   

12.
An obligatory anaerobic, Gram-positive, rod-shaped organism was isolated from faeces of a healthy human donor. It was characterized using biochemical, phenotypic and molecular taxonomic methods. The organism produced acetate, lactate, and ethanol as the major products of glucose fermentation. The G + C content was 53 mol%. Based on comparative 16S rRNA gene sequencing, the unidentified bacterium is a member of the Clostridium subphylum of the Gram-positive bacteria, and most closely related to species of the Clostridium coccoides cluster (rRNA cluster XIVa) [M.D. Collins et al., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations, Int. J. Syst. Bacteriol. 44 (1994) 812-826]. Clostridium bolteae and Clostridium clostridioforme were identified as the most closely related described species. A 16S rRNA sequence divergence value of > 3% suggested that the isolate represents a new species. This was also supported by the gyrase-encoding gyrB gene sequences. Based on these findings, we propose the novel bacterium from human faeces to be classified as a new species, Clostridium asparagiforme. The type strain of C. asparagiforme is N6 (DSM 15981 and CCUG 48471).  相似文献   

13.
Two strains designated RF6(T) and RB10(T) were isolated, from activated sludge and from river sediments, respectively, both systems receiving chromium contaminated water. Phylogenetic analysis showed that strain RF6(T)and strain RB10(T) represented two new species of the genus Leucobacter. Strain RB10(T) can be distinguished from RF6(T) by its ability to grow at 37 degrees C, by showing a different optimum pH, by cell wall amino acids different relative amount and by having the fatty acid strait C16:0 as the third most abundant fatty acid. On the basis of the distinct peptidoglycan composition, 16S ribosomal DNA sequence analysis, DNA-DNA reassociation values, and phenotypic characteristics we are of the opinion that strain RF6(T) represents a new species of the genus Leucobacter for which we propose the name Leucobacter luti (CIP 108818(T)=LMG 23118) and that strain RB10(T) represents an additional new species of the same genus for which we propose the name Leucobacter alluvii (CIP 108819(T)=LMG 23117).  相似文献   

14.
A taxonomic study of 24 Gram-stain-negative rod-shaped bacteria originating from the Antarctic environment is described. Phylogenetic analysis using 16S rRNA gene sequencing differentiated isolated strains into two groups belonging to the genus Flavobacterium. Group I (n = 20) was closest to Flavobacterium aquidurense WB 1.1-56T (98.3% 16S rRNA gene sequence similarity) while group II (n = 4) showed Flavobacterium hydatis DSM 2063T as its nearest neighbour (98.5–98.9% 16S rRNA gene sequence similarity). Despite high 16S rRNA gene sequence similarity, these two groups represented two distinct novel species as shown by phenotypic traits and low genomic relatedness assessed by rep-PCR fingerprinting, DNA-DNA hybridization and whole-genome sequencing. Common to representative strains of both groups were the presence of major menaquinone MK-6 and sym-homospermidine as the major polyamine. Common major fatty acids were C15:0 iso, C15:1 iso G, C15:0 iso 3-OH, C17:0 iso 3OH and Summed Feature 3 (C16:1 ω7c/C16:1 ω6c). Strain CCM 8828T (group I) contained phosphatidylethanolamine, three unidentified lipids lacking a functional group, three unidentified aminolipids and single unidentified glycolipid in the polar lipid profile. Strain CCM 8825T (group II) contained phosphatidylethanolamine, eight unidentified lipids lacking a functional group, three unidentified aminolipids and two unidentified glycolipids in the polar lipid profile. These characteristics corresponded to characteristics of the genus Flavobacterium. The obtained results showed that the analysed strains represent novel species of the genus Flavobacterium, for which the names Flavobacterium circumlabens sp. nov. (type strain CCM 8828T = P5626T = LMG 30617T) and Flavobacterium cupreum sp. nov. (type strain CCM 8825T = P2683T = LMG 30614T) are proposed.  相似文献   

15.
Forty bacterial isolates from the effluents of a gelatin factory (Jabalpur, India) were screened for protease activity and the two most potent producers were identified as Bacillus laterosporus and a Flavobacterium sp. The enzymes of both isolates were optimal at pH 8 and 60°C, with maximum activity after 90 min. The enzyme activity of B. laterosporus was suppressed by Fe2+, Mg2+, Mn2+ and Zn2+ ions but was enhanced by Ba2+ and Ca2+. That of Flavobacterium sp. was suppressed by Mg2+ and Mn2+ ions but enhanced by Ba2+, Ca2+ and Fe2+. The enzyme activity of the former was strongly inhibited by KCN, whereas that of the latter was only slightly inhibited by 8-hydroxyquinoline.  相似文献   

16.
Two thermophilic spore-forming strains, with optimum growth temperature at 70 °C, were isolated from compost of the “Experimental System of Composting” (Teora, Avellino, Italy). A phylogenetic analysis based on 16S rRNA gene sequences showed that these organisms represented a new species of the genus Geobacillus. Based on polyphasic taxonomic data the strains represented a novel species for which the name Geobacillus galactosidasius sp. nov. is proposed. The type strain is CF1BT (= ATCC BAA-1450T = DSM 18751T).  相似文献   

17.
Gram-negative, facultatively anaerobic bacterial strains were consistently isolated from oak trees displaying symptoms of extensive stem bleeding. In Britain, this disorder is called Acute Oak Decline (AOD). A similar condition has been noted on species of Mediterranean oak in Spain. The identity of bacterial isolates from symptomatic trees in both countries was investigated using molecular techniques and phenotypic assays. 16S rRNA gene sequencing indicated that the strains were most closely related to the genera Serratia, Kluyvera, Klebsiella and Raoultella (all>97%). Phylogenetic analysis revealed that the strains formed a distinct lineage within the family Enterobacteriaceae, which was confirmed by both gyrB- and rpoB-gene sequencing. DNA-DNA hybridization confirmed that the strains belonged to a single taxon which could also be differentiated phenotypically from its closest phylogenetic neighbours. The phylogenetic and phenotypic data both demonstrated that the strains isolated from oak represented a novel genus and species within the family Enterobacteriaceae for which the name Gibbsiella quercinecans gen. nov., sp. nov. (type strain=FRB 97(T)=LMG 25500(T)=NCPPB 4470(T)) is proposed.  相似文献   

18.
A novel actinobacterium, designated strain MSW-19T, was isolated from a seawater sample in Republic of Korea. Cells were aerobic, Gram-positive, non-endospore-forming, and non-motile cocci. Colonies were circular, convex, opaque, and vivid yellow in colour. A phylogenetic tree based on 16S rRNA gene sequences exhibited that the organism formed a distinct clade within the radius encompassing representatives of the family Propionibacteriaceae. The phylogenetic neighbors were the type strains of the genera Friedmanniella, Microlunatus, Micropruina, Propionicicella, and Propionicimonas. Levels of 16S rRNA gene sequence similarity between the isolate and members of the family were less than 95.3%. The cell wall peptidoglycan of the organism contained LL-diaminopimelic acid as the diagnostic diamino acid. The isolate contained MK-9(H4) as the predominant menaquinone, ai-C15:0 as the major fatty acid and polar lipids including phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. The G+C content of the DNA was 69.6 mol%. On the basis of the phenotypic and phylogenetic data presented here, the isolate is considered to represent a novel genus and species in the family Propionibacteriaceae, for which the name Ponticoccus gilvus gen. nov., sp. nov. is proposed. The type strain is strain MSW-19T (= KCTC 19476T= DSM 21351T).  相似文献   

19.
Three Gram-positive, anaerobic, pleomorphic strains (PG10(T), PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10(T) (CECT 8111(T), DSM 25737(T)) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C(16:0) and C(18:1)ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γmeso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10(T), PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively.  相似文献   

20.
Four novel yeast species are described, two from decaying mushrooms, viz. Candida cretensis and Candida vadensis, and two from rotten wood, viz. Blastobotrys robertii and Candida scorzettiae. Accession numbers for the CBS and ARS Culture Collections, and GenBank accession numbers for the D1/D2 domains of the large subunit of ribosomal DNA are: B. robertii CBS 10106T, NRRL Y-27775, DQ839395; C. cretensis CBS 9453T, NRRL Y-27777, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, NRRL Y-27665, DQ839394; C. vadensis CBS 9454T, NRRL Y-27778, AY498863 and DQ839396. The GenBank accession number for the ITS region of C. cretensis is AY498862 and that for C. vadensis is AY498864. C. cretensis was the only species of the four that displayed fermentative activity. All four type strains grew on n-hexadecane. C. scorzettiae is the only one of the new species that assimilates some phenolic compounds, viz. 3-hydroxy derivatives of benzoic, phenylacetic and cinnamic acids, but not the corresponding 4-hydroxy acids. This is indicative of an operative gentisate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号