首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to determine the viability and infectivity of oocysts of Cryptosporidium baileyi that had been stored from 1 to 40 months at 4 degrees C preserved in 2.5% potassium dichromate solution. Oocysts of C. baileyi were purified from the feces of experimentally infected chickens using discontinuous sucrose gradients. Subsequently, the purified oocysts were suspended in 2.5% potassium dichromate solution at a concentration of 1 x 10(7) organism/ml, and their viabilities were assessed by nucleic acid staining, histologic examination, and infectivity to 2-day-old chickens. All chickens inoculated with oocysts that had been stored for 1-18 months developed patent infections, while chickens infected with older oocysts remained uninfected. Between 5.8% and 82.2% of the oocysts, stored at 4 degrees C in 2.5% potassium dichromate solution, were found to be viable, as determined by nucleic acid staining. Parasite colonization in the bursa of Fabricius was detected in the microvillus border of bursal epithelium. The finding that C. baileyi oocysts remain infective to chickens for at least 18 months offers important time-saving advantages to investigators who frequently require large numbers of oocysts.  相似文献   

2.
Sporozoites of Cryptosporidium baileyi did not undergo development in primary cell cultures from either avian or mammalian hosts, or in mammalian cell lines. Oocysts of C. baileyi produced infections resulting in complete development to sporulated oocysts in chicken embryos and embryos of 8 other avian species examined. Inoculation of 4 X 10(5) oocysts was not pathogenic for avian embryos as evidenced by the lack of gross lesions or death. Oocysts obtained after C. baileyi had been passaged 10 times (first experiment) or 20 times (second experiment) in chicken embryos still caused clinical respiratory disease and gross airsacculitis when inoculated intratracheally into 2-day-old broiler chickens. Oocysts that had been passaged 10 times in chicken embryos were similarly pathogenic for 4-day-old turkeys after intratracheal inoculation.  相似文献   

3.
The life cycle and morphology of a previously undescribed species of Cryptosporidium isolated from commercial broiler chickens is described. The prepatent period for Cryptosporidium baileyi n. sp. was three days post oral inoculation (PI) of oocysts, and the patent period was days 4-24 PI for chickens inoculated at two days of age and days 4-14 for chickens inoculated at one and six months of age. During the first three days PI, most developmental stages of C. baileyi were found in the microvillous region of enterocytes of the ileum and large intestine. By day 4 PI, most parasites occurred in enterocytes of the cloaca and bursa of Fabricius (BF). Mature Type I meronts with eight merozoites first appeared 12 h PI and measured 5.0 x 4.9 micrometers. Mature Type II meronts with four merozoites and a large granular residuum first appeared 48 h PI and measured 5.1 x 5.1 micrometers. Type III meronts with eight short merozoites and a large homogeneous residuum first appeared 72 h PI and measured 5.2 x 5.1 micrometers. Microgamonts (4.0 x 4.0 micrometers) produced approximately 16 microgametes that penetrated into macrogametes (4.7 x 4.7 micrometers). Macrogametes gave rise to two types of oocysts that sporulated within the host cells. Most were thick-walled oocysts (6.3 x 5.2 micrometers), the resistant forms that passed unaltered in the feces. Some were thin-walled oocysts whose wall (membrane) readily ruptured upon release from the host cell. Sporozoites from thin-walled oocysts were observed penetrating enterocytes in mucosal smears. The presence of thin-walled, autoinfective oocysts and the recycling of Type I meronts may explain why chickens develop heavy intestinal infections lasting up to 21 days. Oocysts of C. baileyi were inoculated orally into several animals to determine its host specificity. Cryptosporidium baileyi did not produce infections in suckling mice and goats or in two-day-old or two-week-old quail. One of six 10-day-old turkeys had small numbers of asexual stages only in the BF. Four of six one-day-old turkeys developed mild infections only in the BF, and sexual stages of the parasite were observed in only one of the four. All seven one-day-old ducks and seven two-day-old geese developed heavy infections only in the BF with all known developmental stages present.  相似文献   

4.
Due to their ground-feeding behaviour, free-ranging chickens and turkeys are exposed to oocysts and are good indicators of the presence of Toxoplasma gondii in the environment. In addition, poultry may become infected by ingestion of tissues of infected intermediate hosts such as small rodents. Free-ranging poultry are considered an important source of T. gondii infection in humans, especially in developing countries. Knowledge on T. gondii genotypes in infected animals and humans is important for understanding the epidemiology of T. gondii infections. The aim of the present study was to analyse the ability of experimentally infected turkeys and chickens to develop a T. gondii clonal type-specific antibody response (IgY) after i.v. inoculation with tachyzoites of three T. gondii clonal lineages, types I, II and III. A peptide microarray displaying a panel of 101 different synthetic peptides was used for serotyping. Peptide sequences were derived from polymorphic regions of 16?T. gondii proteins (GRA1, GRA3-7, SAG1, SAG2A, SAG3, SAG4, SRS1, SRS2, ROP1, NTPase I and NTPase III and BSR4). The array was probed with 120 sera from experimentally infected chickens and turkeys inoculated with different doses of T. gondii tachyzoites (104, 103 and 102) collected from isolates representative for T. gondii clonal types I (RH), II (ME49) or III (NED) and uninfected controls. After screening of the peptides with reference sera from chickens and turkeys, and evaluation of data by Receiver Operating Characteristics analysis, 41 and 40 peptides were identified that appeared suitable to detect type-specific reactions with sera collected at 2, 5, 7 and 9?weeks p.i. Selected peptides allowed the identification of T. gondii clonal types, until 9?week p.i., which the chickens or turkeys had been inoculated with. At 9?weeks p.i., a high proportion of the experimentally infected chickens (67% (12/18)) and turkeys (61% (11/18)) no longer reacted with the selected peptides. Serotyping of the infection in individual chickens or turkeys was only possible when the whole peptide panel was applied. Clonal type-specific antibody responses were dynamic in both poultry species and depended on the individual animal and the time after infection.  相似文献   

5.
本次调研共采集合肥地区五个大型鸡场的150个新鲜鸡粪便样品,结果在62个粪样中检出了隐孢子虫,总阳性检出率为1.3%。因五个鸡场均发现有隐孢子虫,说明该虫感染在合肥地区较为普遍。不过,各鸡场之间的阳性检出率从10.0%到83.3%高低不等。本研究同时剖检了其中四个鸡场的38只病死鸡尸,发现隐孢子虫的有11只,死鸡感染率为28.9%。通过鉴定,首次认为安徽省有火鸡孢子虫(C.Meleagridis)和贝氏隐孢子虫(C.baileyi)两个虫种。统计分析得知:隐孢子虫的阳性检出率与鸡群的日龄呈一种极显著的抛物线形相关关系;与球虫感染相比,虽然阳性检出率略低,但差异不显著,均可达到同(第)一位(原虫)感染水平;不过,二者之间不存在有直线相关关系。  相似文献   

6.
ABSTRACT. The life cycle and morphology of a previously undescribed species of Cryptosporidium isolated from commercial broiler chickens is described. The prepatent period for Cryptosporidium baileyi n. sp. was three days post oral inoculation (PI) of oocysts, and the patent period was days 4–24 PI for chickens inoculated at two days of age and days 4–14 for chickens inoculated at one and six months of age. During the first three days PI, most developmental stages of C. baileyi were found in the microvillous region of enterocytes of the ileum and large intestine. By day 4 PI, most parasites occurred in enterocytes of the cloaca and bursa of Fabricius (BF). Mature Type I meronts with eight merozoites first appeared 12 h PI and measured 5.0 × 4.9 μm. Mature Type II meronts with four merozoites and a large granular residuum first appeared 48 h PI and measured 5.1 × 5.1 μm. Type I meronts with eight short merozoites and a large homogeneous residuum first appeared 72 h PI and measured 5.2 × 5.1 μm. Microgamonts (4.0 × 4.0 μm) produced 16 micro-gametes that penetrated into macrogametes (4.7 × 4.7 μm). Macrogametes gave rise to two types of oocysts that sporulated within the host cells. Most were thick-walled oocysts (6.3 × 5.2 μm), the resistant forms that passed unaltered in the feces. Some were thin-walled oocysts whose wall (membrane) readily ruptured upon release from the host cell. Sporozoites from thin-walled oocysts were observed penetrating enterocytes in mucosal smears. The presence of thin-walled, autoinfective oocysts and the recycling of Type I meronts may explain why chickens develop heavy intestinal infections lasting up to 21 days. Oocysts of C. baileyi were inoculated orally into several animals to determine its host specificity. Cryptosporidium baileyi did not produce infections in suckling mice and goats or in two-dayold or two-week-old quail. One of six 10-day-old turkeys had small numbers of asexual stages only in the BF. Four of six one-day-old turkeys developed mild infections only in the BF, and sexual stages of the parasite were observed in only one of the four. All seven one-day-old ducks and seven two-day-old geese developed heavy infections only in the BF with all known developmental stages present.  相似文献   

7.
Host specificity of Cryptosporidium sp. isolated from chickens   总被引:1,自引:0,他引:1  
The host specificity of Cryptosporidium sp. infecting chickens was evaluated by oral inoculation of oocysts into 6 different species of neonatal rodents, adult nude mice (athymic), neonatal conventional and gnotobiotic pigs, turkeys, muscovy ducks and bobwhite quail. Examinations of tissue sections, ileal mucosal smears, fecal flotations and stained feces failed to reveal any infections in the mammalian species examined. Oocysts were observed in the feces, and developmental stages were observed in tissue sections, of turkeys and muscovy ducks but not bobwhite quail. This study indicates that Cryptosporidium sp. infections in avian species are probably not a zoonotic threat to humans.  相似文献   

8.
Cryptosporidium is a genus of apicomplexan parasites that inhabit the respiratory and gastrointestinal tracts of vertebrates. Research of these parasites is limited by a lack of model hosts. This study aimed to determine the extent to which infection at the embryo stage can enhance the propagation of Cryptosporidium oocysts in chickens. Nine-day-old chicken embryos and one-day-old chickens were experimentally infected with different doses of Cryptosporidium baileyi and Cryptosporidium parvum oocysts. Post hatching, all chickens had demonstrable infections, and the infection dose had no effect on the course of infection. Chickens infected as embryos shed oocysts immediately after hatching and shed significantly more oocysts over the course of the infection than chickens infected as one-day-olds. In chickens infected as embryos, C. baileyi was found in all organs except the brain whereas, C. parvum was only found in the gastrointestinal tract and trachea. In chickens infected as one-day-olds, C. baileyi was only found in the gastrointestinal tract and trachea. Chickens infected as embryos with C. baileyi died within 16 days of hatching. All other chickens cleared the infection. Infection of chickens as embryos could be used as an effective and simple model for the propagation of C. baileyi and C. parvum.  相似文献   

9.
This study was undertaken in order to characterize Cryptosporidium meleagridis isolated from a turkey in Hungary and to compare the morphologies, host specificities, organ locations, and small-subunit RNA (SSU rRNA) gene sequences of this organism and other Cryptosporidium species. The phenotypic differences between C. meleagridis and Cryptosporidium parvum Hungarian calf isolate (zoonotic genotype) oocysts were small, although they were statistically significant. Oocysts of C. meleagridis were successfully passaged in turkeys and were transmitted from turkeys to immunosuppressed mice and from mice to chickens. The location of C. meleagridis was the small intestine, like the location of C. parvum. A comparison of sequence data for the variable region of the SSU rRNA gene of C. meleagridis isolated from turkeys with other Cryptosporidium sequence data in the GenBank database revealed that the Hungarian C. meleagridis sequence is identical to a C. meleagridis sequence recently described for a North Carolina isolate. Thus, C. meleagridis is a distinct species that occurs worldwide and has a broad host range, like the C. parvum zoonotic strain (also called the calf or bovine strain) and Cryptosporidium felis. Because birds are susceptible to C. meleagridis and to some zoonotic strains of C. parvum, these animals may play an active role in contamination of surface waters not only with Cryptosporidium baileyi but also with C. parvum-like parasites.  相似文献   

10.
Extraintestinal sporozoites of chicken Eimeria in chickens and turkeys   总被引:1,自引:0,他引:1  
Oocysts were found in the feces of chickens (recipients) dosed orally with whole blood, liver, lung, or heart homogenates from chickens and turkeys (donors) inoculated 3 and 4 days previously with a mixture of 3.5 X 10(6) oocysts of chicken Eimeria. No oocysts were found in the feces of recipients given spleen homogenates from these same chickens and turkeys and none were found in the feces of recipients given similar material from uninoculated donors. Intracellular sporazoites were found in the peripheral blood of a turkey inoculated with chicken Eimeria. The results indicate that a small number of sporozoites are capable of invading and surviving for at least 4 days in the peripheral blood of chickens and turkeys.  相似文献   

11.
The ultrastructural features of sexual development of Cryptosporidium baileyi in the respiratory tract of experimentally infected broiler chickens were studied using transmission electron microscopy. Sexual stages of C. baileyi were seen attached to the tracheal epithelium and free in the tracheal lumen. These stages included intracellular type III merozoite-like stages, microgamonts, microgametes, macrogamonts, thin-walled oocysts, and thick-walled oocysts. These stages were developmentally similar to those observed for other Cryptosporidium species. All of the above stages were observed during each study day. Thin-walled oocysts, microgamonts, and microgametes were seen less frequently than other sexual stages. Microgamonts, macrogamonts, and oocysts attached to the epithelium were all contained in a host cell membrane or within a parasitophorous vacuole. Thin-walled oocysts of C. baileyi were observed for the first time on an ultrastructural level in the respiratory tract of chickens.  相似文献   

12.
Cryptosporidiosis is a common parasitic infection in birds that is caused by more than 25 Cryptosporidium species and genotypes. Many of the genotypes that cause avian cryptosporidiosis are poorly characterized. The genetic and biological characteristics of avian genotype III are described here and these data support the establishment of a new species, Cryptosporidium proventriculi. Faecal samples from the orders Passeriformes and Psittaciformes were screened for the presence of Cryptosporidium by microscopy and sequencing, and infections were detected in 10 of 98 Passeriformes and in 27 of 402 Psittaciformes. Cryptosporidium baileyi was detected in both orders. Cryptosporidium galli and avian genotype I were found in Passeriformes, and C. avium and C. proventriculi were found in Psittaciformes. Cryptosporidium proventriculi was infectious for cockatiels under experimental conditions, with a prepatent period of six days post-infection (DPI), but not for budgerigars, chickens or SCID mice. Experimentally infected cockatiels shed oocysts more than 30 DPI, with an infection intensity ranging from 4,000 to 60,000 oocysts per gram (OPG). Naturally infected cockatiels shed oocysts with an infection intensity ranging from 2,000 to 30,000 OPG. Cryptosporidium proventriculi infects the proventriculus and ventriculus, and oocysts measure 7.4 × 5.8 μm. None of the birds infected C. proventriculi developed clinical signs.  相似文献   

13.
Cryptosporidium galli Pavlasek, 1999, described from the feces of birds, is redescribed with additional molecular and biological data. Oocysts are ellipsoidal, are passed fully sporulated, lack sporocysts, and measure 8.25 x 6.3 microm (range 8.0-8.5 x 6.2-6.4 microm) with a length-width ratio of 1.30 (n = 50). Oocysts are structurally similar to those of Cryptosporidium baileyi described from chickens, but in addition to being considerably larger than oocysts of C. baileyi, these oocysts infect the proventriculus in a variety of birds and not the respiratory tract. Oocysts were successfully transmitted from chickens to chickens, and morphologically similar oocysts also were observed in a variety of exotic and wild birds (Order Passeriformes, Phasianidae, Fringillidae, and Icteridae). Molecular and phylogenetic analyses at the 18S rRNA, HSP70, and actin gene loci demonstrate that this species is genetically distinct from all known species and genotypes of Cryptosporidium and, thus, was named C. galli.  相似文献   

14.
Cryptosporidium canis n. sp. from domestic dogs.   总被引:9,自引:0,他引:9  
Oocysts of Cryptosporidium, from the feces of a naturally infected dog and from an HIV-infected human, were identified as the previously reported canine genotype of Cryptosporidium parvum, hereafter referred to as Cryptosporidium canis n. sp. Also among the oocysts from the dog, a trace amount of C. parvum bovine genotype was detected. Cryptosporidium canis oocysts from both the dog and human were infectious for calves. Oocysts excreted by calf 1 (dog source) were approximately 90% C. canis and 10% C. parvum, whereas those excreted by calf 3 (human source) were 100% C. canis. Oocysts from calf 1 infected calf 2 resulting in excretion by calf 2 of oocysts approximately 90% C. parvum and 10% C. canis. Oocysts of C. canis were not infectious for BALB/c neonatal mice or immunosuppressed C57 juvenile mice, although all control mice became infected with the C. parvum Beltsville isolate. Oocysts of C. canis from calf 1 and the human were structurally indistinguishable from oocysts of the C. parvum Beltsville isolate (bovine). However, C. canis oocysts differed markedly at the molecular level from all known species of Cryptosporidium based on sequence data for the 18S rDNA and the HSP 70 gene. The differences in genetics and host specificity clearly differentiate C. canis as a new species.  相似文献   

15.
SYNOPSIS. Cryptosporidium wrairi sp. n. is described from the laboratory guinea pig Cavia porcellus. The life cycle is given insofar as it is known. Two schizogonous generations are described; the 1st with 8 merozoites, the 2nd with 4 merozoites. The latter generation was previously referred to as the sporulated oocyst, but evidence is presented to show that it is a schizont. Micro- and macrogametogony are also described. No oocysts were found. Cross-transmission to mice, chickens, turkeys and rabbits was unsuccessful. The generic character of oocysts with 4 naked sporozoites is discarded and the presence of endogenous stages in the striated border of epithelial cells is used as the emended generic character. A listing of valid and non-valid species is given.  相似文献   

16.
In order to determine the distribution and prevalence of human cryptosporidiosis on western and southern coastal islands of Jeollanam-do (Province), fecal samples were collected from 2,541 people residing on 25 islands, 13 in the western coasts and 12 in the southern coasts, during July and August 2000. Fecal smears were prepared following formalin-ether sedimentation of the samples and stained by a modified acid-fast procedure. The presence of Cryptosporidium oocysts was determined by light microscopy. Cryptosporidium oocysts were detected in 38 specimens (1.5%). The oocyst positive rate varied (0-6.0%) according to island; the highest was detected on Oenarodo (6.0%), followed by Naenarodo (5.6%) and Nakwoldo (5.4%). The majority (35 persons, 94.6%) of Cryptosporidium-infected individuals were older than 50 years of age. Men (22/1,159; 1.9%) were infected at a higher rate than women (16/1,382; 1.2%). The results of the present survey indicate that human Cryptosporidium infections (due to Cryptosporidium hominis and/or C. parvum) are maintained at a relatively low prevalence on coastal islands of Jeollanam-do, Republic of Korea.  相似文献   

17.
This study was undertaken in order to characterize Cryptosporidium meleagridis isolated from a turkey in Hungary and to compare the morphologies, host specificities, organ locations, and small-subunit RNA (SSU rRNA) gene sequences of this organism and other Cryptosporidium species. The phenotypic differences between C. meleagridis and Cryptosporidium parvum Hungarian calf isolate (zoonotic genotype) oocysts were small, although they were statistically significant. Oocysts of C. meleagridis were successfully passaged in turkeys and were transmitted from turkeys to immunosuppressed mice and from mice to chickens. The location of C. meleagridis was the small intestine, like the location of C. parvum. A comparison of sequence data for the variable region of the SSU rRNA gene of C. meleagridis isolated from turkeys with other Cryptosporidium sequence data in the GenBank database revealed that the Hungarian C. meleagridis sequence is identical to a C. meleagridis sequence recently described for a North Carolina isolate. Thus, C. meleagridis is a distinct species that occurs worldwide and has a broad host range, like the C. parvum zoonotic strain (also called the calf or bovine strain) and Cryptosporidium felis. Because birds are susceptible to C. meleagridis and to some zoonotic strains of C. parvum, these animals may play an active role in contamination of surface waters not only with Cryptosporidium baileyi but also with C. parvum-like parasites.  相似文献   

18.
BALB/c Mice were infected as neonates and at different ages to study the susceptibility dynamics in this animal model to Cryptosporidium parvum. When 4-day-old animals were infected with 10(5) C. parvum oocysts, parasites were detected in the terminal ileum when the mice became 14-25 days old (10-21 days post-infection [PI]). The percentage of animals positive for parasites was 100% up to the age of 19 days (15 days PI) but decreased immediately thereafter until no parasites were detected in 26-day-old (22 days PI) or older mice. Parasite load also decreased in these animals from 184.7 parasites per high power field in 14-day-old animals (10 days PI) to 0.22 in 25-day-old (21 days PI) mice. In a second study, some neonatal mice became resistant to C. parvum when infection was attempted at day-10 of age (day-15 of age at sacrifice). The susceptibility to C. parvum decreased until 14 days of age (19 days of age at sacrifice) when mice could no longer be infected. Parasite load also decreased in infected mice from 235.6 parasites per high power field (9 days of age at sacrifice) to 0.25 (18 days of age at sacrifice).  相似文献   

19.
The purpose of this study was to determine whether gamma-irradiated Cryptosporidium parvum oocysts could elicit protective immunity against cryptosporidiosis in dairy calves. Cryptosporidium parvum Iowa strain oocysts (1 x 10(6) per inoculation) were exposed to various levels of gamma irradiation (350-500 Gy) and inoculated into 1-day-old dairy calves. The calves were examined daily for clinical signs of cryptosporidiosis, and fecal samples were processed for the presence of C. parvum oocysts. At 21 days of age, the calves were challenged by oral inoculation with 1 x 10(5) C. parvum oocysts and examined daily for oocyst shedding and clinical cryptosporidiosis. Calves that were inoculated with C. parvum oocysts exposed to 350-375 Gy shed C. parvum oocysts in feces. Higher irradiation doses (450 or 500 Gy) prevented oocyst development, but the calves remained susceptible to C. parvum challenge infection. Cryptosporidium parvum oocysts exposed to 400 Gy were incapable of any measurable development but retained the capacity to elicit a protective response against C. parvum challenge. These findings indicate that it may be possible to protect calves against cryptosporidiosis by inoculation with C. parvum oocysts exposed to 400-Gy gamma irradiation.  相似文献   

20.
There are many reports of cryptosporidial infection in ostriches, but none with molecular characterization of the isolates. A study was undertaken for the characterization of a Brazilian Cryptosporidium sp. ostrich isolate by using molecular phylogenetic analysis of fragments of the 18S ribosomal DNA, heat-shock protein (hsp) 70 coding gene, and actin coding gene. Biological studies were accomplished by the experimental inoculation of chickens via oral or intratracheal routes with fresh ostrich Cryptosporidium sp. oocysts. Molecular analysis of nucleotide sequences of the 3 genes by using neighbor-joining and parsimony methods grouped the ostrich isolate as a sister taxon of Cryptosporidium baileyi and showed that the ostrich isolate is genetically distinct from all other known Cryptosporidium species or genotypes. None of the inoculated chickens developed infection as determined by mucosal smears, histology, and fecal screening for oocysts. Although biological and molecular studies indicate that the ostrich Cryptosporidium is a new species, further studies regarding morphological, biological, and molecular characteristics of other ostrich isolates are required to confirm the species status of the ostrich Cryptosporidium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号