首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predictive quantitative structure-activity relationship analysis was developed for a diverse series of recently synthesized 1-aryl-tetrahydroisoquinoline analogs with anti-HIV activities in this study. The conventional 2D-QSAR models were developed by genetic function approximation (GFA) and stepwise multiple linear regression (MLR) with acceptable explanation of 94.9% and 95.5% and good predicted power of 91.7% and 91.7%, respectively. The results of the 2D-QSAR models were further compared with 3D-QSAR model generated by molecular field analysis (MFA), investigating the substitutional requirements for the favorable receptor-drug interaction and quantitatively indicating the important regions of molecules for their activities. The results obtained by combining these methodologies give insights into the key features for designing more potent analogs against HIV.  相似文献   

2.
Binding affinity data of thiazole and thiadiazole derivatives (n=30) for human adenosine A3 receptor subtype have been subjected to Quantitative Structure-Activity Relationship (QSAR) analysis using quantum chemical and hydrophobicity parameters. Wang-Ford charges of the common atoms of the compounds [calculated from molecular electrostatic potential surface of energy minimized geometry using Austin Model 1 (AM1) technique] were used as independent variables apart from partition coefficient (logP) and suitable dummy parameters. The variables for the multiple regression analyses were selected based on principal component factor analysis (FA), and generated equations were statistically validated using leave-one-out technique. The best equation thus obtained explained and predicted 74.4% and 68.9% respectively of the variance of the binding affinity. The results suggested importance of Wang-Ford charges of atoms C2, C5 and C7. Furthermore, the A3 binding affinity increases with decrease of lipophilicity of the compounds and in the presence of methyl or ethyl substituent at R position. Again, the binding affinity decreases in the presence of tert-butyloxy group at R position. When factor scores were used as predictor variables in principal component regression analysis, the resulted model showed 87.0% predicted variance and 89.5% explained variance. The data set was also modeled using genetic function approximation (GFA) technique. The best two equations derived from GFA show better predicted variance values (0.753 and 0.739) than that found in case of the best equation derived from FA. However, considerable intercorrelation was found between two predictor variables in case of GFA derived equations. GFA derived equations show importance of Wang-Ford charges of different atoms of the thiazole/thiadiazole nucleus and phenyl ring (S9, X8 and C2, the effects of the first two being predominant) along with similar impact of lipophilicity and R group on the binding affinity as found in case of the FA derived relation.  相似文献   

3.
4.
To address challenging flexible docking problems, a number of docking algorithms pregenerate large collections of candidate conformers. To remove the redundancy from such ensembles, a central problem in this context is to report a selection of conformers maximizing some geometric diversity criterion. We make three contributions to this problem. First, we resort to geometric optimization so as to report selections maximizing the molecular volume or molecular surface area (MSA) of the selection. Greedy strategies are developed, together with approximation bounds. Second, to assess the efficacy of our algorithms, we investigate two conformer ensembles corresponding to a flexible loop of four protein complexes. By focusing on the MSA of the selection, we show that our strategy matches the MSA of standard selection methods, but resorting to a number of conformers between one and two orders of magnitude smaller. This observation is qualitatively explained using the Betti numbers of the union of balls of the selection. Finally, we replace the conformer selection problem in the context of multiple-copy flexible docking. On the aforementioned systems, we show that using the loops selected by our strategy can improve the result of the docking process.  相似文献   

5.
6.
7.
8.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 44 (benzothiazole-2-yl) acetonitrile derivatives, inhibiting c-Jun N-terminal kinase-3 (JNK3). It includes molecular field analysis (MFA) and receptor surface analysis (RSA). The QSAR model was developed using 34 compounds and its predictive ability was assessed using a test set of 10 compounds. The predictive 3D-QSAR models have conventional r2 values of 0.849 and 0.766 for MFA and RSA, respectively; while the cross-validated coefficient r(cv)2 values of 0.616 and 0.605 for MFA and RSA, respectively. The results of the QSAR model were further compared with a structure-based analysis using docking studies with crystal structure of JNK3. Ligands bind in the ATP pocket and the hydrogen bond with GLN155 was found to be crucial for selectivity among other kinases. The results of 3D-QSAR and docking studies validate each other and hence, the combination of both methodologies provides a powerful tool directed to the design of novel and selective JNK3 inhibitors.  相似文献   

9.
10.
11.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis of large, flexible molecules, such as the dopamine reuptake inhibitor GBR 12909 (1), is complicated by the fact that they can take on a wide range of closely-related conformations. The first step in the analysis is to classify the conformers into groups. Over 600 conformers each of a piperazine (2) and piperidine (3) analog of 1 were generated by random search conformational analysis using the Merck Molecular Force Field (MMFF94). Singular value decomposition (SVD) was used to group the conformers of 2 and 3 by the similarity of their non-ring torsional angles. SVD uncovered subtle differences in their conformer populations due to that fact that the conformers separate along different principal components, and ultimately to the fact that different torsional angles are the chief contributors to these components. The results were compared to our previous SVD analysis (Fiorentino, et al., Journal of Computational Chemistry, 2006, 27, 609-620) of conformer populations of 2 and 3 generated by the Tripos force field and Gasteiger-Hückel charges. Except for the dominant contribution of angle B3 to principal component 8 seen with both force fields, the angles which are chiefly responsible for the grouping of the conformers of 2 and 3 are different with both force fields. This illustrates that SVD is useful in identifying unique groupings of conformers in large data sets of flexible molecules—a first step in selecting representative conformers for 3D-QSAR modeling studies.  相似文献   

12.
A new 4D-QSAR approach has been considered. For all investigated molecules the 3D structural models have been created and the set of conformers (fourth dimension) have been used. Each conformer is represented as a system of different simplexes (tetratomic fragments of fixed structure, chirality and symmetry). The investigation of influence of molecular structure of macrocyclic pyridinophanes, their analogues and certain other compounds on anticancer and antiviral (anti-influenza, antiherpes and antiadenovirus) activity has been carried out by means of the 4D-QSAR. Statistic characteristics for QSAR of PLS (partial least squares) models are satisfactory (R = 0.92-0.97; CVR = 0.63-0.83). Molecular fragments increasing and decreasing biological activity were defined. This information may be useful for design, and direct synthesis of novel anticancer and antiviral agents.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.  相似文献   

20.
The solution conformation of [D -Pen2,D -Pen5] enkephalin (DPDPE), a highly potent δ-selective opioid agonist, was examined by means of NMR, molecular mechanics and molecular dynamics methods. The structural information in the solvent water was obtained employing one- and two-dimensional methods of 1H and 13C-NMR spectroscopy. Based on the distance geometry technique using the ROE data as input, 400 conformers were obtained and considered in the structure analysis. Alternatively, about 2000 conformers were stochastically generated and related to the NMR data after energy minimization. The structure analysis provides one conformer in agreement with all NMR data, which belongs to the lowest energy conformation group. This structure may serve as a reference conformer for DPDPE analogues synthesized with the aim of activity increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号