首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-symmetrical cytosine methylation in tobacco pollen DNA   总被引:5,自引:0,他引:5  
We have detected sequence-specific non-symmetrical cytosine methylation within a 140 bp region of the promoter for the tobacco auxin-binding protein gene T85 in pollen DNA. Direct sequencing of the population of bisulphite reaction products showed that, in this region, 10 out of a possible 49 cytosine residues were methylated at a high frequency in pollen whereas the corresponding region from somatic cells (leaf DNA) did not show a detectable level of methylation. The context of these sites was 1×m5CpTpC, 1×m5CpGpT, 1×m5CpCpT, 2×m5CpTpT, 2×m5CpGpG, and 3×m5CpApT of which only m5CpGpG and m5CpGpT fitted the consensus sequence for symmetrical methylation in plants.  相似文献   

2.
The biological significance of cytosine methylation is as yet incompletely understood, but substantial and growing evidence strongly suggests that perturbation of methylation patterns, resulting from the infidelity of DNA cytosine methyltransferase, is an important component of the development of human cancer. We have developed a novel in vitro assay that allows us to quantitatively determine the DNA substrate preferences of cytosine methylases. This approach, which we call mass tagging, involves the labeling of target cytosine residues in synthetic DNA duplexes with stable isotopes, such as 15N. Methylation is then measured by the formation of 5-methylcytosine (5mC) by gas chromatography/mass spectrometry. The DNA substrate selectivity is determined from the mass spectrum of the product 5mC. With the non-symmetrical duplex DNA substrate examined in this study we find that the bacterial methyltransferase HpaII (duplex DNA recognition sequence CCGG) methylates the one methylatable cytosine of each strand similarly. Introduction of an A-C mispair at the methylation site shifts methylation exclusively to the mispaired cytosine residue. In direct competition assays with HpaII methylase we observe that the mispaired substrate is methylated more extensively than the fully complementary, normal substrate, although both have one HpaII methylation site. Through the use of this approach we will be able to learn more about the mechanisms by which methylation patterns can become altered.  相似文献   

3.
4.
BackgroundControl of cellular processes by epigenetic modification of cytosine in DNA is widespread among living organisms, but, is hitherto unknown in the extremely radioresistant microbe D. radiodurans.MethodsC-5 methyl cytosines (m5C) were detected by immuno-blotting with m5C-specific antibody. Site of cytosine methylation by DR_C0020 encoded protein was investigated by bisulfite sequencing. The DR_C0020 knockout mutant (Δdcm), constructed by site directed mutagenesis, was assessed for effect on growth, radiation resistance and proteome. Proteins were identified by mass spectrometry.ResultsMethylated cytosines were detected in the D. radiodurans genome. The DR_C0020 encoded protein (Dcm, NCBI accession: WP_034351354.1), whose amino acid sequence resembles m4C methylases, was shown to be the lone SAM-dependent C-5 cytosine methyltransferase. Purified Dcm protein was found to methylate CpN sequence with a preference for methylation of two consecutive cytosines. The Δdcm strain completely lost m5C modification from its genome, had no effect on growth but became radiation sensitive. The Δdcm cells exhibited minor alterations in the abundance of several proteins involved primarily in protein homeostasis, oxidative stress defense, metabolism, etc.ConclusionDR_C0020 encoded SAM-dependent methyltransferase Dcm is solely responsible for C-5cytosine methylation at CpN sites in the genome of D. radiodurans and regulates protein homeostasis under normal growth conditions. The protein is an unusual case of an amino methyltransferase that has evolved to producing m5C.General significanceAlthough, dispensable under optimal growth conditions, the presence of m5C may be important for recognition of parent strand and, thus, could contribute to the extraordinary DNA repair in D. radiodurans.  相似文献   

5.
Information has been lacking as to whether mitochondrial DNA of animal cells is methylated. The methylation patterns of mitochondrial and nuclear DNAs of several mammalian cell lines have therefore been compared by four methods: (1) in vivo transfer of the methyl group from [methyl-3H]methionine; (2) in vivo incorporation of [32P]orthophosphate and a combination of (1) and (2); (3) in vivo incorporation of [3H]deoxycytidine; (4) in vitro methylation of DNAs with 3H-labeled S-adenosylmethionine as methyl donor and DNA methylase preparations from L cell nuclei. The cell lines were mouse L cells, BHK21C13, C13B4 (baby hamster kidney cells transformed by the Bryan strain of Rouse sarcoma virus), and PyY (BHK cells transformed by polyoma virus). DNA bases were separated chromatographically, using 5-methylcytosine, 6-methylaminopurine and, in some cases, 7-methylguanine as markers.Mitochondrial DNA was found to be significantly less methylated than nuclear DNA with respect to 5-methylcytosine in all cell types studied and by all methods used. The relative advantages and disadvantages of each method have been discussed. The level of 5-methylcytosine in mitochondrial DNA as compared with that in nuclear DNA was estimated as one-fourth to one-fourteenth in various cell lines. The estimated 5-methylcytosine content per circular mitochondrial DNA molecule (mol. wt 10 × 106) was about 12 methylcytosine residues for L cells and 24, 30 and 36 methylcytosine residues for BHK, B4 and PyY cells, respectively. Relative to cytosine residues, the estimate was one 5-methylcytosine per 500 cytosine residues of mitochondrial DNA and one 5-methylcytosine per 36 cytosine residues of nuclear DNA from L-cells. The values for methylcytosine of mitochondrial DNA are presumed to be maximal. PyY cells as compared with other cells had the highest methylcytosine content of both mitochondrial and nuclear DNA as estimated by method (3). No methylation of nuclear DNA was observed in confluent L cells.Evidence for the presence of DNA methylase activity associated with mitochondrial fractions was obtained. This activity could be distinguished from other cellular DNA methylase activity by differential response to mercaptoethanol. Radioactivity from 3H-labeled S-adenosylmethionine was found only in 5-methyl-cytosine of DNA.  相似文献   

6.
Protonation of cytosine in DNA   总被引:4,自引:0,他引:4  
C Zimmer  H Venner 《Biopolymers》1966,4(10):1073-1079
Spectrophotometric acid titrations of DNA samples of different GC content were performed at different wavelengths. From the acid titration profile and absorbance changes of deoxycytidine-5′-monophosphate and DNA the extent of protonated cytosine within the DNA double-stranded molecule was estimated (pK 3.65 at 25°C. in 0.02M KCl). At constant counterion concentration and temperature the maximum of protonated cytosine in DNA before denaturation occurs depends on the base composition and can exceed 50%. The thermal stability of the DNA secondary structure is strongly reduced with increasing amount of ionized cytosine residues. The degree of protonation of cytosine in DNA is decreased with increasing counterion concentration.  相似文献   

7.
Methylation of parental and progeny DNA strands in Physarum polycephalum   总被引:5,自引:0,他引:5  
Although 5-methylcytosine comprises 4 to 8% of the cytosine residues in the major nuclear DNA of Physarum polycephalum (Evans &; Evans, 1970), only 1 % of the cytosine residues of progeny DNA become methylated during replication. Further methylation occurs during the same and subsequent mitotic cycles, so that 6 to 7 cycles after its synthesis, 5-methylcytosine comprises 5 to 7% of the DNA-cytosine residues of a single generation of DNA. The extent of methylation occurring during the S period has been measured by the determination of the specific activity of the precursor (S-adenosylmethionine) and the product (DNA-5-methylcytosine) and by comparison of the radioactivity in DNA-cytosine and DNA-5-methylcytosine after incorporation of [14C]deoxycytidine. Continuing methylation of parental DNA has been shown, by density shift experiments and by the conversion of prelabeled DNA-cytosine to DNA-5-methylcytosine. The DNA-5-methylcytosine once formed was found to be stable.  相似文献   

8.
We have compared the fate of U · G mispairs or analogous T · G mispairs in DNA heteroduplexes transfected into tobacco protoplasts. The heteroduplex DNA consisted of tomato golden mosaic virus DNA sequences in theEscherichia coli vectors pUC118 or pUC119. After transfection, the mismatched U residues were lost with an efficiency of greater than 95%, probably as a result of the uracil-DNA glycosylase pathway for excision of U residues in any sequence context. In contrast to the preferential removal of the mispaired U residues, biased removal of T residues from analogous heteroduplexes was not seen in the transfected plant cells. Also, we investigated the effect of extensively methylating one strand of the heteroduplex DNA used for transfection. Surprisingly, such methylation resulted in highly biased loss of the mismatched base from the 5-methylcytosine-rich strand of T · G-containing heteroduplexes.Deceased. We dedicate this paper to the memory of this young scientist.  相似文献   

9.
The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context. In this study, we have used LC-MS/MS to track down the fate of the methyl group removed from 5mC on DNA by mouse DNMT3B in vitro and found that it becomes covalently linked to the DNA methylation catalytic cysteine of the enzyme. We also show that Ca2+ homeostasis-dependent but TET1/TET2/TET3/TDG-independent demethylation of methylated episomal DNA by mouse DNMT3A or DNMT3B can occur in transfected human HEK 293 and mouse embryonic stem (ES) cells. Based on these results, we present a tentative working model of Ca2+ and redox conditions-dependent active DNA demethylation by DNMTs. Our study substantiates the potential roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation during Ca2+-dependent physiological processes.  相似文献   

10.
The cytosine C5 methyltransferase M.HaeIII recognises and methylates the central cytosine of its canonical site GGCC. Here we report that M.HaeIII can also, with lower efficiency, methylate cytosines located in a wide range of non-canonical sequences. Using bisulphite sequencing we mapped the methyl- cytosine residues in DNA methylated in vitro and in vivo by M.HaeIII. Methyl-cytosine residues were observed in multiple sequence contexts, most commonly, but not exclusively, at star sites (sites differing by a single base from the canonical sequence). The most frequently used star sites had changes at positions 1 and 4, but there is little or no methylation at star sites changed at position 2. The rate of methylation of non-canonical sites can be quite significant: a DNA substrate lacking a canonical site was methylated by M.HaeIII in vitro at a rate only an order of magnitude slower than an otherwise identical substrate containing the canonical site. In vivo methylation of non-canonical sites may therefore be significant and may have provided the starting point for the evolution of restriction–modification systems with novel sequence specificities.  相似文献   

11.
DNA methylation and epigenetics   总被引:5,自引:0,他引:5  
  相似文献   

12.
In the rat, differentiation and cell proliferation both affect DNA methylation. We studied 5-methylcytosine at the inner cytosine of the sequence C-C-G-G, a common methylation site, using endonuclease MspI (which cleaves C-C-G-G- and C-mC-G-G), and its isoschizomer HpaII (which cleaves only C-C-G-G). DNA from all tissues and cell lines studied was methylated at C-C-G-G, at levels ranging from 45 to 80%, but the methylation sites were not distributed uniformly. Our analysis suggests a model in which cells contain variable amounts of three DNA methylation states, averaging 30–40, 70–80 and 95–100% methylation, respectively. One biological parameter that alters methylation is the prolferative state of the cell. We observed that NRK, a non-transformed cell line, increased its DNA methylation from 45 to 67% when monolayer cultures became confluent and non-dividing. We also observed that a class of repetitive DNA was completely methylated in DNA from all sources except a transformed cell line.  相似文献   

13.
The tomato nuclear genome was determined to have a G+C content of 37% which is among the lowest reported for any plant species. Non-coding regions have a G+C content even lower (32% average) whereas coding regions are considerably richer in G+C (46%).5-methyl cytosine was the only modified base detected and on average 23% of the cytosine residues are methylated. Immature tissues and protoplasts have significantly lower levels of cytosine methylation (average 20%) than mature tissues (average 25%). Mature pollen has an intermediate level of methylation (22%). Seeds gave the highest value (27%), suggesting de novo methylation after pollination and during seed development.Based on isoschizomer studies we estimate 55% of the CpG target sites (detected by Msp I/Hpa II) and 85% of the CpNpG target sites (detected by Bst NI/Eco RI)are methylated. Unmethylated target sites (both CpG and CpNpG) are not randomly distributed throughout the genome, but frequently occur in clusters. These clusters resemble CpG islands recently reported in maize and tobacco.The low G+C content and high levels of cytosine methylation in tomato may be due to previous transitions of 5mCT. This is supported by the fact that G+C levels are lowest in non-coding portions of the genome in which selection is relaxed and thus transitions are more likely to be tolerated. This hypothesis is also supported by the general deficiency of methylation target sites in the tomato genome, especially in non-coding regions.Using methylation isoschizomers and RFLP analysis we have also determined that polymorphism between plants, for cytosine methylation at allelic sites, is common in tomato. Comparing DNA from two tomato species, 20% of the polymorphisms detected by Bst NI/Eco RII could be attributed to differential methylation at the CpNpG target sites. With Msp I/Hpa II, 50% of the polymorphisms were attributable to methylation (CpG and CpNpG sites). Moreover, these polymorphisms were demonstrated to be inherited in a mendelian fashion and to co-segregate with the methylation target site and thus do not represent variation for transacting factors that might be involved in methylation of DNA. The potential role of heritable methylation polymorphism in evolution of gene regulation and in RFLP studies is discussed.  相似文献   

14.
N6-Methyladenine (m6A) has been found in DNAs of various eukaryotes (algae, fungi, protozoa, and higher plants). Like bacterial DNA, DNAs of these organisms are subject to enzymatic modification (methylation) not only at cytosine, but also at adenine bases. There is indirect evidence that adenine methylation of the genome occurs in animals as well. In plants, m6A was detected in total, mitochondrial, and nuclear DNAs. It was observed that both adenines and cytosines can be methylated in one gene (DRM2). Open reading frames coding for homologs of bacterial adenine DNA methyltransferases were revealed in protozoan, yeast, higher plant, insect, nematode, and vertebrate genomes, suggesting the presence of adenine DNA methyltransferases in evolutionarily distant eukaryotes. The first higher-eukaryotic adenine DNA N6-methyltransferase (wad-mtase) was isolated from vacuolar vesicles of wheat coleoptiles. The enzyme depends on Mg2+ or Ca2+ and, in the presence of S-adenosyl-L-methionine, methylates de novo the first adenine of the sequence TGATCA in single- and double-stranded DNAs, preferring the former. Adenine methylation of eukaryotic DNA is probably involved in regulating gene expression and replication, including that of mitochondrial DNA; plays a role in controlling the persistence of foreign DNA in the cell; and acts as a component of a plant restriction— modification system. Thus, the eukaryotic cell has at least two different systems for enzymatic methylation of DNA (at adenines and at cytosines) and a special mechanism regulating the functions of genes via a combinatorial hierarchy of these interdependent modifications of the genome.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 557–566.Original Russian Text Copyright © 2005 by Vanyushin.To the memory of my teacher, Academician Andrei Nikolaevich Belozersky  相似文献   

15.
Salt-adapted and control cells of the cultivated potato, Solanum tuberosum cultivar Russet Burbank, untreated or treated with 5-azacytidine (an inhibitor of DNA methylation), were compared with respect to: a) % of cytosine methylation in total nuclear DNA, as determined by HPLC; b) fresh and dry weight. Adapted and control cells were compared also with respect to % of cytosine methylation in DNA, which was purified from DNaseI-partially-digested chromatin and size fractionated by electrophoresis in agarose gels. The growth (represented by dry weight) of the NaCl-adapted cells in saline medium lacking 5-azacytidine was similar to that of control cells in standard medium. The adaptation of the cells was correlated with some increase (+16%) of methylation in total DNA and with a much greater increase in the lower molecular weight DNA fractions which were obtained from the presumably more active chromatin. As expected, the treatment of the cells with the methylation inhibitor induced a decrease in the level of methylation. The decrease of methylation, however, was much greater in the adapted cells, whose dry weight, unlike in the control, was not affected by this treatment.Abbreviations 5-azaCyt 5-azacytidine - C cytidine - 2,4-D 2,4 dichlorophenoxyacetic acid - DW dry weight - EDTA ethylenediaminetetraacetic acid - FW fresh weight - HPLC high performance liquid chromatography - m5Cyt 5 methyl cytidine - RB Russet Burbank - SDS sodium dodecyl sulfate - TE 10 mM Tris and 1 mM EDTA - Tris Tris [hydroxymethyl] aminomethane  相似文献   

16.
DNA cytosine methylation and heat-induced deamination   总被引:14,自引:0,他引:14  
The heat-induced conversion of 5-methylcytosine (m5C) residues to thymine residues and of cytosine to uracil residues in single-stranded DNA was studied. The calculated rates for deamination at 37°C and pH 7.4 were 9.5×10–10 and 2.1×10–10 sec–1, respectively. N4-Methyldeoxycytidine, which is in the DNA of certain thermophilic bacteria, was more heat-resistant than was deoxycytidine and much more than was 5-methyldeoxycytidine. Thermophilic bacteria which contain N4-methylcytosine rather than m5C in their genomes may thereby largely avoid heat-induced mutation due to deamination, which is incurred by the many organisms that contain m5C in their DNA.  相似文献   

17.
The bZIP homodimers CEBPB and CREB1 bind DNA containing methylated cytosines differently. CREB1 binds stronger to the C/EBP half-site GCAA when the cytosine is methylated. For CEBPB, methylation of the same cytosine does not affect DNA binding. The X-ray structure of CREB1 binding the half site GTCA identifies an alanine in the DNA binding region interacting with the methyl group of T, structurally analogous to the methyl group of methylated C. This alanine is replaced with a valine in CEBPB. To explore the contribution of this amino acid to binding with methylated cytosine of the GCAA half-site, we made the reciprocal mutants CEBPB(V285A) and CREB1(A297V) and used protein binding microarrays (PBM) to examine binding to four types of double-stranded DNA (dsDNA): 1) DNA with cytosine in both strands (DNA(C|C)), 2) DNA with 5-methylcytosine (M) in one strand and cytosine in the second strand (DNA(M|C)), 3) DNA with 5-hydroxymethylcytosine (H) in one strand and cytosine in the second strand (DNA(H|C)), and 4) DNA with both cytosines in all CG dinucleotides containing 5-methylcytosine (DNA(5mCG)). When binding to DNA(C|C), CEBPB (V285A) preferentially binds the CRE consensus motif (TGACGTCA), similar to CREB1. The reciprocal mutant, CREB1(A297V) binds DNA with some similarity to CEBPB, with strongest binding to the methylated PAR site 8-mer TTACGTAA. These data demonstrate that V285 residue inhibits CEBPB binding to methylated cytosine of the GCAA half-site.  相似文献   

18.
Whereas in Escherichia coli DNA mismatch repair is directed to the newly synthesized strand due to its transient lack of adenine methylation, the molecular determinants of strand discrimination in eukaryotes are presently unknown. In mammalian cells, cytosine methylation within CpG sites may represent an analogous and mechanistically plausible means of targeting mismatch correction. Using HeLa nuclear extracts, we conducted a systematic analysis in vitro to determine whether cytosine methylation participates in human DNA mismatch repair. We prepared a set of A·C heteroduplex molecules that were either unmethylated, hemimethylated or fully methylated at CpG sequences and found that the methylation status persisted under the assay conditions. However, no effect on either the time course or the magnitude of mismatch repair events was evident; only strand discontinuities contributed to strand bias. By western analysis we demonstrated that the HeLa extract contained MED1 protein, which interacts with MLH1 and binds to CpG-methylated DNA; supplementation with purified MED1 protein was without effect. In summary, human DNA mismatch repair operates independently of CpG methylation status, and we found no evidence supporting a role for CpG hemimethylation as a strand discrimination signal.  相似文献   

19.
While M13mp18 double-stranded DNA was irradiated with ion beam, and transfected intoE. coli JM103, a decrease of transfecting activity was discovered. The lacZ- mutation frequency at 20% survival could reach (3.6–16.8) × 104, about 2, 3–10 times that of unirradiated M13DNA. Altogether, 27 IacZ-mutants were selected, 10 of which were used for sequencing. 7 of the sequenced mutants show base changes in 250-bp region examined (the remaining 3 mutants probably have base changes outside the regions sequenced). 5 of the base-changed mutants contain more than one mutational base sites (some of them even have 5–6 mutational base sites in 250-bp region examined); this dense distribution of base changes in polysites has seldom been seen in X-rays, Y-rays or UV induced DNA mutations. Our experiments also showed that the types of base changes include transitions(50%), transversions (45%) and deletion (5%); no addition or duplication was observed. The transitions were mainly C→T and A→G; the transversions were mainly C→A and C→G. The mutations involving cytosine residue (in the template strand) constitute about 60% of all the base changes observed. In comparison with the surrounding sequences of mutational base sites, the base located between TG and CT is found to be easily substituted.  相似文献   

20.
Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号