共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitsuhara I Matsufuru H Ohshima M Kaku H Nakajima Y Murai N Natori S Ohashi Y 《Molecular plant-microbe interactions : MPMI》2000,13(8):860-868
We demonstrate here that induced expression of sarcotoxin IA, a bactericidal peptide from Sarcophaga peregrina, enhanced the resistance of transgenic tobacco plants to both bacterial and fungal pathogens. The peptide was produced with a modified PR1a promoter, which is further activated by salicylic acid treatment and necrotic lesion formation by pathogen infection. Host resistance to infection of bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tabaci was shown to be dependent on the amounts of sarcotoxin IA expressed. Since we found antifungal activity of the peptide in vitro, transgenic seedlings were also inoculated with fungal pathogens Rhizoctonia solani and Pythium aphanidermatum. Transgenic plants expressing higher levels of sarcotoxin were able to withstand fungal infection and remained healthy even after 4 weeks, while control plants were dead by fungal infection after 2 weeks. 相似文献
2.
The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana 总被引:1,自引:0,他引:1
Janni M Sella L Favaron F Blechl AE De Lorenzo G D'Ovidio R 《Molecular plant-microbe interactions : MPMI》2008,21(2):171-177
A possible strategy to control plant pathogens is the improvement of natural plant defense mechanisms against the tools that pathogens commonly use to penetrate and colonize the host tissue. One of these mechanisms is represented by the host plant's ability to inhibit the pathogen's capacity to degrade plant cell wall polysaccharides. Polygalacturonase-inhibiting proteins (PGIP) are plant defense cell wall glycoproteins that inhibit the activity of fungal endopolygalacturonases (endo-PGs). To assess the effectiveness of these proteins in protecting wheat from fungal pathogens, we produced a number of transgenic wheat lines expressing a bean PGIP (PvPGIP2) having a wide spectrum of specificities against fungal PGs. Three independent transgenic lines were characterized in detail, including determination of the levels of PvPGIP2 accumulation and its subcellular localization and inhibitory activity. Results show that the transgene-encoded protein is correctly secreted into the apoplast, maintains its characteristic recognition specificities, and endows the transgenic wheat with new PG recognition capabilities. As a consequence, transgenic wheat tissue showed increased resistance to digestion by the PG of Fusarium moniliforme. These new properties also were confirmed at the plant level during interactions with the fungal pathogen Bipolaris sorokiniana. All three lines showed significant reductions in symptom progression (46 to 50%) through the leaves following infection with this pathogen. Our results illustrate the feasibility of improving wheat's defenses against pathogens by expression of proteins with new capabilities to counteract those produced by the pathogens. 相似文献
3.
Heterologous expression of genes in filamentous fungi. 总被引:4,自引:0,他引:4
J S Kruszewska 《Acta biochimica Polonica》1999,46(1):181-195
Isolation of some biologically important proteins from natural sources was found to be too expensive or scarcely possible (human proteins). The problem could be solved by expression of heterologous genes. Many biologically active proteins have been successfully expressed in filamentous fungi, some of them, however, at a low level. Thus, improvement of this technique appears to be a very important task. The process comprises several steps. Some of them, such as efficient transformation, vector construction, processing of signal sequences, post-translational modifications and secretion of the expressed proteins, have been intensively investigated. This review presents obstacles and problems encountered in expression of heterologous genes and discusses strategies of development in this area. 相似文献
4.
Raham Sher Khan Rinaldi Sjahril Ikuo Nakamura Masahiro Mii 《Plant biotechnology reports》2008,2(1):13-20
Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial
and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack
of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites
for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic
plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against
the fungal pathogen Alternaria solani (causal agent of early blight). 相似文献
5.
Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens 总被引:5,自引:0,他引:5
Two pathogenesis-related (PR) protein genes consisting of a barley chitinase (chi-2) and a wheat lipid-transfer-protein (ltp) were introduced singly and in combination into carrot plants via Agrobacterium-mediated transformation using the phosphinothricin acetyl transferase (bar) gene as a selectable marker. Over 75% of regenerated plants were confirmed to be positive for the transgenes by PCR and
RT-PCR and were resistant to the herbicide Liberty (0.2%, v/v). Northern analysis and immunoblotting confirmed the expression
of the transgenes in about 70% of the plants, with variable expression levels among individual lines. Southern analysis revealed
from one to three copies of each transgene. Transgenic plants were inoculated with two necrotrophic foliar fungal pathogens,
Alternaria radicicola and Botrytis cinerea, and showed significantly higher resistance when both PR genes were expressed compared to single-gene transformants. The
level of disease reduction in plants expressing both genes was 95% for Botrytis and 90% for Alternaria infection compared to 40–50% for single-gene transformants. The chi2 and ltp genes could be deployed in combination in other crop plants to significantly enhance resistance to necrotrophic fungal pathogens. 相似文献
6.
Silencing of copine genes confers common wheat enhanced resistance to powdery mildew 总被引:1,自引:0,他引:1
下载免费PDF全文

Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt‐resistant or Bgt‐tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus‐induced gene silencing (VIGS) induces the up‐regulation of defence responses in wheat. These TaBON1‐ or TaBON3‐silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up‐regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. 相似文献
7.
Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight 总被引:2,自引:0,他引:2
Mackintosh CA Lewis J Radmer LE Shin S Heinen SJ Smith LA Wyckoff MN Dill-Macky R Evans CK Kravchenko S Baldridge GD Zeyen RJ Muehlbauer GJ 《Plant cell reports》2007,26(4):479-488
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale
breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of
resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach
to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing
the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant
transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines
carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions
in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease
severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed
from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had
enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together,
the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse
and field conditions. 相似文献
8.
Heterologous expression of new antifungal chitinase from wheat 总被引:2,自引:1,他引:2
Chitinases (EC 3.2.1.14) have been grouped into seven classes (class I-VII) on the basis of their structural properties. Chitinases expressed during plant-microbe interaction are involved in defense responses of host plant against pathogens. In the present investigation, chitinase gene from wheat has been subcloned and overexpressed in Escherichia coli BL-21 (DE3). Molecular phylogeny analyses of wheat chitinase indicated that it belongs to an acidic form of class VII chitinase (glycosyl hydrolase family 19) and shows 77% identity with other wheat chitinase of class IV and low level identity to other plant chitinases. The three-dimensional structural model of wheat chitinase showed the presence of 10 alpha-helices, 3 beta-strands, 21 loop turns and the presence of 6 cysteine residues that are responsible for the formation of 3 disulphide bridges. The active site residues (Glu94 and Glu103) may be suggested for its antifungal activity. Expression of chitinase (33 kDa) was confirmed by SDS-PAGE and Western hybridization analyses. The yield of purified chitinase was 20 mg/L with chitinase activity of 1.9 U/mg. Purified chitinase exerted a broad-spectrum antifungal activity against Colletotrichum falcatum (red rot of sugarcane) Pestalotia theae (leaf spot of tea), Rhizoctonia solani (sheath blight of rice), Sarocladium oryzae (sheath rot of rice) Alternaria sp. (grain discoloration of rice) and Fusarium sp. (scab of rye). Due to its innate antifungal potential wheat chitinase can be used to enhance fungal-resistance in crop plants. 相似文献
9.
Saint Pierre C Crossa JL Bonnett D Yamaguchi-Shinozaki K Reynolds MP 《Journal of experimental botany》2012,63(5):1799-1808
Realistic experimental protocols to screen for drought adaptation in controlled conditions are crucial if high throughput phenotyping is to be used for the identification of high performance lines, and is especially important in the evaluation of transgenes where stringent biosecurity measures restrict the frequency of open field trials. Transgenic DREB1A-wheat events were selected under greenhouse conditions by evaluating survival and recovery under severe drought (SURV) as well as for water use efficiency (WUE). Greenhouse experiments confirmed the advantages of transgenic events in recovery after severe water stress. Under field conditions, the group of transgenic lines did not generally outperform the controls in terms of grain yield under water deficit. However, the events selected for WUE were identified as lines that combine an acceptable yield-even higher yield (WUE-11) under well irrigated conditions-and stable performance across the different environments generated by the experimental treatments. 相似文献
10.
Rivero M Furman N Mencacci N Picca P Toum L Lentz E Bravo-Almonacid F Mentaberry A 《Journal of biotechnology》2012,157(2):334-343
Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens. 相似文献
11.
Caenorhabditis elegans has four genes which encode skeletal myosin heavy chain isoforms. We have re-introduced clones of two of these genes, myo-3 and unc-54 at low copy number into the germline of C. elegans. The resulting loci behave as functional copies of the genes by two genetic criteria: (i) they can result in phenotypic rescue of strains carrying inactivating myo-3 or unc-54 mutations, and (ii) their presence in strains with wild-type copies of the endogenous myosin loci has genetic consequences similar to duplicating the endogenous loci. The re-introduced genes function at a level close to that of the endogenous loci. Monoclonal antibodies specific for the different isoforms have been used to localize the expressed proteins. The re-introduced genes express in precisely the same cell types as the endogenous genes, and the myosin products produced assemble into filament structures as in wild-type. Unexpectedly, we have found in the course of this work that very high copy numbers of the unc-54 gene lead to a disruption of muscle structure which may result from overexpression of the protein product. 相似文献
12.
13.
Wheat puroindolines enhance fungal disease resistance in transgenic rice 总被引:11,自引:0,他引:11
Krishnamurthy K Balconi C Sherwood JE Giroux MJ 《Molecular plant-microbe interactions : MPMI》2001,14(10):1255-1260
Antimicrobial peptides play a role in the immune systems of animals and plants by limiting pathogen infection and growth. The puroindolines, endosperm-specific proteins involved in wheat seed hardness, are small proteins reported to have in vitro antimicrobial properties. Rice, the most widely used cereal crop worldwide, normally does not contain puroindolines. Transgenic rice plants that constitutively express the puroindoline genes pinA and/or pinB throughout the plants were produced. PIN extracts of leaves from the transgenic plants reduced in vitro growth of Magnaporthe grisea and Rhizoctonia solani, two major fungal pathogens of rice, by 35 to 50%. Transgenic rice expressing pinA and/or pinB showed significantly increased tolerance to M. grisea (rice blast), with a 29 to 54% reduction in symptoms, and R. solani (sheath blight), with an 11 to 22% reduction in symptoms. Puroindolines are effective in vivo in antifungal proteins and could be valuable new tools in the control of a wide range of fungal pathogens of crop plants. 相似文献
14.
Genome-wide fungal stress responsive miRNA expression in wheat 总被引:2,自引:0,他引:2
Behçet Inal Mine Türktaş Hakan Eren Emre Ilhan Sezer Okay Mehmet Atak Mustafa Erayman Turgay Unver 《Planta》2014,240(6):1287-1298
15.
Kalyani Prasad Pooja Bhatnagar-Mathur Farid Waliyar Kiran K. Sharma 《Journal of plant biochemistry and biotechnology.》2013,22(2):222-233
A chitinase gene from rice (Rchit) was introduced into three varieties of peanut through Agrobacterium-mediated genetic transformation resulting in 30 transgenic events harboring the Rchit gene. Stable integration and expression of the transgenes were confirmed using PCR, RT-PCR and Southern blot analysis. Progeny derived from selfing of the primary transgenic events revealed a Mendelian inheritance pattern (3:1) for the transgenes. The chitinase activity in the leaves of the transgenic events was 2 to 14-fold greater than that in the non-transformed control plants. Seeds of most transgenic events showed 0–10 % A. flavus infection during in vitro seed inoculation bioassays. Transgenic peanut plants evaluated for resistance against late leaf spot (LLS) and rust using detached leaf assays showed longer incubation, latent period and lower infection frequencies when compared to their non-transformed counterparts. A significant negative correlation existed between the chitinase activity and the frequency of infection to the three tested pathogens. Three progenies from two transgenic events displayed significantly higher disease resistance for LLS, rust and A. flavus infection and are being advanced for further evaluations under confined field conditions to confirm as sources to develop peanut varieties with enhanced resistance to these fungal pathogens. 相似文献
16.
17.
Castellani LW Gargalovic P Febbraio M Charugundla S Jien ML Lusis AJ 《Journal of lipid research》2004,45(12):2377-2387
We previously demonstrated that transgenic mice overexpressing mouse apolipoprotein A-II (apoA-II) exhibit several traits associated with the insulin resistance (IR) syndrome, including increased atherosclerosis, hypertriglyceridemia, obesity, and IR. The skeletal muscle appeared to be the insulin-resistant tissue in the apoA-II transgenic mice. We now demonstrate a decrease in FA oxidation in skeletal muscle of apoA-II transgenic mice, consistent with reports that decreased skeletal muscle FA oxidation is associated with increased skeletal muscle triglyceride accumulation, skeletal muscle IR, and obesity. The decrease in FA oxidation is not due to decreased carnitine palmitoyltransferase 1 activity, because oxidation of palmitate and octanoate were similarly decreased. Quantitative RT-PCR analysis of gene expression demonstrated that the decrease in FA oxidation may be explained by a decrease in medium chain acyl-CoA dehydrogenase. We previously demonstrated that HDLs from apoA-II transgenic mice exhibit reduced binding to CD36, a scavenger receptor involved in FA metabolism. However, studies of combined apoA-II transgenic and CD36 knockout mice suggest that the major effects of apoA-II are independent of CD36. Rosiglitazone treatment significantly ameliorated IR in the apoA-II transgenic mice, suggesting that the underlying mechanisms of IR in this animal model may share common features with certain types of human IR. 相似文献
18.
19.
Li N Salom D Zhang L Harris T Ballesteros JA Golczak M Jastrzebska B Palczewski K Kurahara C Juan T Jordan S Salon JA 《Biochemistry》2007,46(28):8350-8359
Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina. The resulting receptor protein was uniformly glycosylated and pharmacologically well behaved. By comparison, we demonstrated in a control experiment that opsin, when expressed in the liver, had a complex pattern of glycosylation. Upon solubilization, the retinal adenosine A1 receptor retained binding characteristics similar to its starting material. This expression method may prove generally useful for generating high-quality G protein-coupled receptors for structural studies. 相似文献
20.
Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco 总被引:25,自引:1,他引:25
Guido Jach Birgit Görnhardt John Mundy Jürgen Logemann Elke Pinsdorf Robert Leah Jeff Schell Christoph Maas 《The Plant journal : for cell and molecular biology》1995,8(1):97-109
cDNAs encoding three proteins from barley ( Hordeum vulgare ), a class-II chitinase (CHI), a class-II β-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani , which infects a range of plant species including tobacco. To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated. Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/ CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack when compared with the protection levels obtained with corresponding isogenic lines expressing a single barley transgene to a similar level. The data indicate synergistic protective interaction of the co-expressed anti-fungal proteins in vivo . 相似文献