首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A 10,000-rad radiation hybrid (RH) cell panel of the rhesus macaque was generated to construct a comprehensive RH map of chromosome 5. The map represents 218 markers typed in 185 RH clones. The 4846-cR map has an average marker spacing of 798 kb. Alignments of the RH map to macaque and human genome sequences confirm a large inversion and reveal a previously unreported telomeric inversion. The macaque genome sequence indicates small translocations from the ancestral homolog of macaque chromosome 5 to macaque chromosomes 1 and 6. The RH map suggests that these are probably assembly artifacts. Unlike the genome sequence, the RH mapping data indicate the conservation of synteny between macaque chromosome 5 and human chromosome 4. This study shows that the 10,000-rad panel is appropriate for the generation of a high-resolution whole-genome RH map suitable for the verification of the rhesus genome assembly.  相似文献   

2.
We genotyped a Chinese and an Indian-origin rhesus macaque using the Affymetrix Genome-Wide Human SNP Array 6.0 and cataloged 85,473 uniquely mapping heterospecific SNPs. These SNPs were assigned to rhesus chromosomes according to their probe sequence alignments as displayed in the human and rhesus reference sequences. The conserved gene order (synteny) revealed by heterospecific SNP maps is in concordance with that of the published human and rhesus macaque genomes.Using these SNPs' original human rs numbers, we identified 12,328 genes annotated in humans that are associated with these SNPs, 3674 of which were found in at least one of the two rhesus macaques studied. Due to their density, the heterospecific SNPs allow fine-grained comparisons, including approximate boundaries of intra- and extra-chromosomal rearrangements involving gene orthologs, which can be used to distinguish rhesus macaque chromosomes from human chromosomes.  相似文献   

3.
Radiation hybrid (RH) mapping provides a powerful tool to build high-resolution maps of genomes. Here, we demonstrate the use of the AFLP® technique for high-throughput typing of RH cell lines. Cattle were used as the model species because an RH panel was available to investigate the behaviour of AFLP markers within the microsatellite- and STS-based maps of this species. A total of 747 AFLP markers were typed on the TM112 RH radiation panel and 651 of these were assigned by two-point analysis to the 29 bovine autosomes and sex chromosomes. AFLP markers were added to the 1222 microsatellite and STS markers that were included in earlier RH maps. Multipoint maps were constructed for seven example chromosomes, which retained 248 microsatellite and STS markers, and added 123 AFLP markers at LOD 4. The addition of the AFLP markers increased the number of markers by 42.1% and the map length by 10.4%. The AFLP markers showed lower retention frequency (RF) values than the STS markers. The comparison of RF values in AFLP markers and their corresponding AFLP-derived STSs demonstrated that the lower RF values were due to the lower detection sensitivity of the AFLP technique. Despite these differences, AFLP and AFLP-derived STS markers mapped to identical or similar positions. These results demonstrate that it is possible to merge AFLP and microsatellite markers in the same map. The application of AFLP technology could permit the rapid construction of RH maps in species for which extensive genome information and large numbers of SNP and microsatellite markers are not available.  相似文献   

4.
In recent years, maps of mammalian genomes have been acquiring increasingly higher resolution. Integration of maps of different types has become possible. As a tool in integrating maps of mammalian genomes of different types, high-resolution mapping with radiation-induced hybrids (RH) is used. Here, we present an RH6000 map of the short arm of porcine chromosome 2. The map contains 15 microsatellites and five genes (for parathyroid hormone, lactate dehydrogenase A, myogenic factor, follicle-stimulating hormone beta, and calpain I). The RH panel was obtained on the basis of a hybrid cell line bearing the single porcine chromosome 2 against the background of mink chromosomes. The mean frequency of preserving markers examined in the panel was 18.3%. Integration of four genes in the panel and a comparison of gene order in homologous regions of human and porcine chromosomes are presented.  相似文献   

5.
The genomes of nonhuman primates are powerful references for better understanding the recent evolution of the human genome. Here we compare the order of 802 genomic markers mapped in a rhesus macaque (Macaca mulatta) radiation hybrid panel with the human genome, allowing for nearly complete cross-reference to the human genome at an average resolution of 3.5 Mb. At least 23 large-scale chromosomal rearrangements, mostly inversions, are needed to explain the changes in marker order between human and macaque. Analysis of the breakpoints flanking inverted chromosomal segments and estimation of their duplication divergence dates provide additional evidence implicating segmental duplications as a major mechanism of chromosomal rearrangement in recent primate evolution.  相似文献   

6.
In recent years, maps of mammalian genomes have been acquiring increasingly higher resolution. Integration of maps of different types has become possible. As a tool in integrating maps of mammalian genomes of different types, high-resolution mapping with radiation-induced hybrids (RH) is used. Here, we present an RH6000 map of the short arm of porcine chromosome 2. The map contains 15 microsatellites and five genes (for parathyroid hormone, lactate dehydrogenase A, myogenic factor, follicle-stimulating hormone beta, and calpain I). The RH panel was obtained on the basis of a hybrid cell line bearing the single porcine chromosome 2 against the background of mink chromosomes. The mean frequency of preserving markers examined in the panel was 18.3%. Integration of four genes in the panel and a comparison of gene order in homeologous regions of human and porcine chromosomes are presented.  相似文献   

7.

Background

The ChickRH6 whole chicken genome radiation hybrid (RH) panel recently produced has already been used to build radiation hybrid maps for several chromosomes, generating comparative maps with the human and mouse genomes and suggesting improvements to the chicken draft sequence assembly. Here we present the construction of a RH map of chicken chromosome 2. Markers from the genetic map were used for alignment to the existing GGA2 (Gallus gallus chromosome 2) linkage group and EST were used to provide valuable comparative mapping information. Finally, all markers from the RH map were localised on the chicken draft sequence assembly to check for eventual discordances.

Results

Eighty eight microsatellite markers, 10 genes and 219 EST were selected from the genetic map or on the basis of available comparative mapping information. Out of these 317 markers, 270 gave reliable amplifications on the radiation hybrid panel and 198 were effectively assigned to GGA2. The final RH map is 2794 cR6000 long and is composed of 86 framework markers distributed in 5 groups. Conservation of synteny was found between GGA2 and eight human chromosomes, with segments of conserved gene order of varying lengths.

Conclusion

We obtained a radiation hybrid map of chicken chromosome 2. Comparison to the human genome indicated that most of the 8 groups of conserved synteny studied underwent internal rearrangements. The alignment of our RH map to the first draft of the chicken genome sequence assembly revealed a good agreement between both sets of data, indicative of a low error rate.  相似文献   

8.
The ChickRH6 radiation hybrid panel has been used to construct consensus chromosome radiation hybrid (RH) maps of the chicken genome. Markers genotyped were either from throughout the genome or targeted to specific chromosomes and a large proportion (one third) of data was the result of collaborative efforts. Altogether, 2,531 markers were genotyped, allowing the construction of RH reference maps for 20 chromosomes and linkage groups for four other chromosomes. Amongst the markers, 581 belong to the framework maps, while 1,721 are on the comprehensive maps. Around 800 markers still have to be assigned to linkage groups. Our attempt to assign the supercontigs from the chrun (virtual chromosome containing all the genome sequence that could not be attributed to a chromosome) as well as EST (Expressed Sequence Tag) contigs that do not have a BLAST hit in the genome assembly led to the construction of new maps for microchromosomes either absent or for which very little data is present in the genome assembly. RH data is presented through our ChickRH webserver (http://chickrh.toulouse.inra.fr/), which is a mapping tool as well as the official repository RH database for genotypes. It also displays the RH reference maps and comparison charts with the sequence thus highlighting the possible discrepancies. Future improvements of the RH maps include complete coverage of the sequence assigned to chromosomes, further mapping of the chrun and mapping of EST contigs absent from the assembly. This will help finish the mapping of the smallest gene-rich microchromosomes.  相似文献   

9.
The buffalo (Bubalus bubalis) is a source of milk and meat, and also serves as a draft animal. In this study, a 5000-rad whole-genome radiation hybrid (RH) panel for river buffalo was constructed and used to build preliminary RH maps for BBU3 and BBU10 chromosomes. The preliminary maps contain 66 markers, including coding genes, cattle expressed sequence tags (ESTs) and microsatellite loci. The RH maps presented here are the starting point for mapping additional loci that will allow detailed comparative maps between buffalo, cattle and other species whose genomes may be mapped in the future. A large quantity of DNA has been prepared from the cell lines forming the river buffalo RH panel and will be made publicly available to the international community both for the study of chromosome evolution and for the improvement of traits important to the role of buffalo in animal agriculture.  相似文献   

10.
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.  相似文献   

11.
This study describes the physical and linkage mapping of 42 gene-associated markers developed from mammary gland-derived expressed sequence tags to the cattle genome. Of the markers, 25 were placed on the USDA reference linkage map and 37 were positioned on the Roslin 3000-rad radiation hybrid (RH) map, with 20 assignments shared between the maps. Although no novel regions of conserved synteny between the cattle and the human genomes were identified, the coverage was extended for bovine chromosomes 3, 7, 15, and 29 compared with previously published comparative maps between human and bovine genomes. Overall, these data improve the resolution of the human-bovine comparative maps and will assist future efforts to integrate bovine RH and linkage map data.  相似文献   

12.
A bovine whole-genome radiation hybrid panel and outline map   总被引:10,自引:0,他引:10  
A 3000-rad radiation hybrid panel was constructed for cattle and used to build outline RH maps for all 29 autosomes and the X and Y chromosomes. These outline maps contain about 1200 markers, most of which are anonymous microsatellite loci. Comparisons between the RH chromosome maps, other published RH maps, and linkage maps allow regions of chromosomes that are poorly mapped or that have sparse marker coverage to be identified. In some cases, mapping ambiguities can be resolved. The RH maps presented here are the starting point for mapping additional loci, in particular genes and ESTs that will allow detailed comparative maps between cattle and other species to be constructed. Radiation hybrid cell panels allow high-density genetic maps to be constructed, with the advantage over linkage mapping that markers do not need to be polymorphic. A large quantity of DNA has been prepared from the cells forming the RH panel reported here and is publicly available for mapping large numbers of loci.  相似文献   

13.
Numerous mapping studies of complex traits in the pig have resulted in quantitative trait loci (QTL) intervals of 10-20 cM. To improve the chances to identify the genes located in such intervals, increased expressed sequence tags (EST)-based marker density, coupled with comparative mapping with species whose genomes have been sequenced such as human and mouse, is the most efficient tool. In this study, we mapped 443 porcine EST with a radiation hybrid (RH) panel (384 had LOD > 6.0) and a somatic cell hybrid panel. Requiring no discrepancy between two-point and multipoint RH data allowed robust assignment of 309 EST, of which most were located on porcine chromosomes (SSC) 1, 4, 7, 8 and X. Moreover, we built framework maps for two chromosomes, SSC1 and SSC7, with mapped QTL in regions with known rearrangement between pig and human genomes. Using the Blast tool, we found orthologies between 407 of the 443 pig cDNA sequences and human genes, or to existing pig genes. Our porcine/human comparative mapping results reveal possible new homologies for SSC1, SSC3, SSC5, SSC6, SSC12 and SSC14 and add markers in synteny breakpoints for chromosome 7.  相似文献   

14.
The current genetic and recombination maps of the cat have fewer than 3,000 markers and a resolution limit greater than 1 Mb. To complement the first-generation domestic cat maps, support higher resolution mapping studies, and aid genome assembly in specific areas as well as in the whole genome, a 15,000(Rad) radiation hybrid (RH) panel for the domestic cat was generated. Fibroblasts from the female Abyssinian cat that was used to generate the cat genomic sequence were fused to a Chinese hamster cell line (A23), producing 150 hybrid lines. The clones were initially characterized using 39 short tandem repeats (STRs) and 1,536 SNP markers. The utility of whole-genome amplification in preserving and extending RH panel DNA was also tested using 10 STR markers; no significant difference in retention was observed. The resolution of the 15,000(Rad) RH panel was established by constructing framework maps across 10 different 1-Mb regions on different feline chromosomes. In these regions, 2-point analysis was used to estimate RH distances, which compared favorably with the estimation of physical distances. The study demonstrates that the 15,000(Rad) RH panel constitutes a powerful tool for constructing high-resolution maps, having an average resolution of 40.1 kb per marker across the ten 1-Mb regions. In addition, the RH panel will complement existing genomic resources for the domestic cat, aid in the accurate re-assemblies of the forthcoming cat genomic sequence, and support cross-species genomic comparisons.  相似文献   

15.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

16.
Radiation hybrid (RH) mapping, a somatic cell genetic technique, has been developed in animal systems as a general approach for the construction of long-range physical maps of chromosomes. This statistical method relies on X-ray induced breakage of chromosomes to determine the physical distance between markers, as well as their order on the chromosome. The method can be applied to single chromosomes or across the whole genome. The generation of plant (barley) radiation hybrids and their culture in vitro is described here. PCR-based marker systems are used to verify hybrid status and to demonstrate genome coverage. RH panels of the type generated can be used for physical mapping, map-based cloning, or sequence contig assembly. RH resources will greatly aid the physical characterisation of crop plants with large genomes.  相似文献   

17.
A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci   总被引:13,自引:0,他引:13  
A bovine whole genome 7000-rad radiation hybrid (RH) panel, SUNbRH(7000-rad), was constructed to build a high-resolution RH map. The Shirakawa-USDA linkage map served as a scaffold to construct a framework map of 3216 microsatellites on which 2377 ESTs were ordered. The resulting RH map provided essentially complete coverage across the genome, with 1 cR7000 corresponding to 114 kb, and a cattle-human comparative map of 1716 bovine genes and sequences annotated in the human genome, which covered 79 and 72% of the bovine and human genomes, respectively. We then integrated the bovine RH and comparative maps with BAC fingerprint information in to construct a detailed, BAC-based physical map covering a reported 40-cM quantitative trait locus region for intramuscular fat or "marbling" on BTA 4. In summary, the new, high-resolution SUNbRH7000-rad, comparative, Shirakawa-USDA linkage, and BAC fingerprint maps provide a set of genomic tools for fine mapping regions of interest in cattle.  相似文献   

18.
The Medaka is an excellent genetic system for studies of vertebrate development and disease and environmental and evolutionary biology studies. To facilitate the mapping of markers or the cloning of affected genes in Medaka mutants identified by forward-genetic screens, we have established a panel of whole-genome radiation hybrids (RHs) and RH maps for three Medaka chromosomes. RH mapping is useful, since markers to be mapped need not be polymorphic and one can establish the order of markers that are difficult to resolve by genetic mapping owing to low genetic recombination rates. RHs were generated by fusing the irradiated donor, OLF-136 Medaka cell line, with the host B78 mouse melanoma cells. Of 290 initial RH clones, we selected 93 on the basis of high retention of fragments of the Medaka genome to establish a panel that allows genotyping in the 96-well format. RH maps for linkage groups 12, 17, and 22 were generated using 159 markers. The average retention for the three chromosomes was 19% and the average break point frequency was approximately 33 kb/cR. We estimate the potential resolution of the RH panel to be approximately 186 kb, which is high enough for integrating RH data with bacterial artificial chromosome clones. Thus, this first RH panel will be a useful tool for mapping mutated genes in Medaka.  相似文献   

19.
Radiation hybrid mapping (RH mapping) is considered as one of the main methods of constructing physical maps of mammalian genomes. In introduction, theoretical prerequisites of developing of the RH mapping and statistical methods of data analysis are discussed. Comparative characteristics of universal commercial panels of the radiation hybrid somatic cells (RH panels) are shown. In experimental part of the work, RH mapping is used to localise nucleotide sequences adjacent to NotI sites of human chromosome 3 with the aim to integrate contig map of NotI clones to comprehensive maps of human genome. Five nucleotide sequences adjacent to the sites of integration of papilloma virus in human genome and expressed in the cells of cervical cancer were localised. It was demonstrated that the region 13q14.3-q21.1 was enriched with nucleotide sequences involved in the processes of oncogenesis. RH mapping can be considered as one of the most perspective applications of the modern radiation biology in the field of molecular genetics, that is, in constructing physical maps of mammalian genomes with high resolution level.  相似文献   

20.
Radiation hybrid (RH) mapping has been used to produce genome maps in the human and mouse, but as yet the technique has been applied little to other species. We describe the use of RH mapping in the rat, using a newly available rat/hamster RH panel, to construct an RH map of the proximal part of rat Chromosome (Chr) 4. This region is of interest because quantitative trait loci (QTLs) for defective insulin and catecholamine action, hypertension, and dyslipidemia map to this region. The RH map includes 23 rat genes or microsatellites previously mapped to this part of Chr 4, one rat gene not previously mapped in the rat, and markers for four new genes, homologs of which map to the syntenic region of the mouse genome. The RH map integrates genetic markers previously mapped on several rat crosses, increases the resolution of existing maps, and may provide a suitable basis for physical map construction and gene identification in this chromosomal region. Our results demonstrate the utility of RH mapping in the rat genome and show that RH mapping can be used to localize, in the rat genome, the homologs of genes from other species such as the mouse. This will facilitate identification of candidate genes underlying QTLs on this chromosomal segment. Received: 4 December 1998 / Accepted: 19 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号