首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental changes in lipogenesis have been examined in interscapular brown adipose tissue (BAT), epididymal white adipose tissue and the liver of genetically diabetic (db/db) mice and their normal siblings. Lipogenesis was measured in vivo with 3H2O, from weaning (21 days of age) until 20 weeks of age. Hyperinsulinaemia was evident in db/db mice at all ages. Low rates of lipogenesis were observed at weaning in tissues of both groups of mice, but the rate rose rapidly in the first few days post-weaning. In normal mice, peak lipogenesis was obtained in each tissue at 4-5 weeks of age, and there were no major changes (on a whole-tissue basis) thereafter. A different developmental pattern was apparent in db/db mice. The rate of lipogenesis in BAT rose sharply after weaning, reaching a peak at 26 days of age (several times higher than normal mice), and then falling rapidly such that by 45 days of age it was lower than in normal mice; at age 20 weeks lipogenesis in BAT of the diabetic animals was negligible. In white adipose tissue of the db/db mutants lipogenesis (per tissue) reached a maximum at 5 weeks of age, and fell substantially between 10 and 20 weeks of age. Hepatic lipogenesis in the db/db mice rose progressively from weaning until 8 weeks of age, and then decreased. Except at weaning, hepatic lipogenesis (per tissue) was much greater in db/db mice than in normal mice, and the liver was a more important site of lipogenesis in diabetic mice than in normals, accounting for up to 60% of the whole-body total. In contrast, BAT accounted for a considerably smaller proportion of whole-body lipogenesis in db/db mice than in normal mice. It is concluded that there are major developmental differences in lipogenesis between tissues of db/db mice, and between diabetic and normal animals. The data suggest that there is an early and preferential development of insulin resistance in BAT of the db/db mutant.  相似文献   

2.
Changes in hepatic lipogenesis during development of the rat   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Changes in the activities of ATP citrate lyase, ;malic' enzyme, glucose 6-phosphate dehydrogenase, pyruvate kinase and fructose 1,6-diphosphatase, and in the ability to incorporate [1-(14)C]acetate into lipid have been measured in the livers of developing rats between late foetal life and maturity. 2. In male rats the activities of those systems directly or indirectly concerned in lipogenesis (acetate incorporation into lipid, ATP citrate lyase and glucose 6-phosphate dehydrogenase) fall after birth and are maintained at a low value until weaning. After weaning these activities rise to a maximum between 30 and 40 days and then decline, reaching adult values at about 60 days. ;Malic' enzyme activity follows a similar course, except that none could be detected in the foetal liver. Pyruvate kinase activity is lower in foetal than in adult livers and rises to slightly higher than the adult value in the post-weaning period. Fructose 1,6-diphosphatase activity rises from a very low foetal value to reach a maximum at about 10 days but falls rapidly after weaning to reach adult values at about 30 days. 3. Weaning rats on to a high-fat diet caused the low activities of acetate incorporation, ATP citrate lyase, glucose 6-phosphate dehydrogenase and pyruvate kinase, characteristic of the suckling period, to persist. ;Malic' enzyme and fructose 1,6-diphosphatase activities were not altered appreciably. 4. No differences could be detected in hepatic enzyme activities between males and females up to 35 days, but after this time female rats gave higher values for acetate incorporation, glucose 6-phosphate dehydrogenase activity and ;malic' enzyme activity. 5. The results are discussed in relation to changes in alimentation and hormonal influences.  相似文献   

3.
The activities of fatty acid synthetase, citrate cleavage enzyme, glucose-6-phosphate dehydrogenase and malic enzyme were measured in the liver and adipose tissue of cardiomyopathic and normal hamsters at age 33, 68 and 108 days. There was no difference in the activity of hepatic fatty acid synthetase between the diseased animals and the controls at any stage in their development. The activity of glucose-6-phosphate dehydrogenase was not different until age 108 days where it was significantly elevated in the BIO 82.62 strain. Citrate cleavage enzyme in the liver was depressed at all stages in the diseased animals as was malic enzyme. In adipose tissue, all enzyme activities were significantly depressed in the cardiomyopathic animals at the three stages. These data suggest that lipogenesis was depressed in the cardiomyopathic hamster.  相似文献   

4.
The responses of rat hepatic and brown adipose tissue in vivo lipogenesis to premature (15 days) and normal (21 days) weaning have been correlated to changes in the activities of acetyl-CoA carboxylase and two NADPH-producing enzymes, malic enzyme and glucose-6-phosphate dehydrogenase. Both tissues show an induction of lipogenesis in response to weaning. In the liver, lipogenic flux is closely linked to the activity of acetyl-CoA carboxylase, but not necessarily that of malic enzyme or glucose-6-phosphate dehydrogenase, whereas no such dissociation between enzyme activity and flux rate occurs in brown adipose tissue. Thyroid hormones, implicated in many physiological changes around weaning, do not seem to play a primary role in the adaptation of lipogenesis to the dietary change at this time, although a permissive role in both tissues is possible.  相似文献   

5.
1. Changes in the activities of acetyl-CoA carboxylase (EC 6.4.1.2), phosphofructokinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), extramitochondrial aconitate hydratase (EC 4.2.1.3) and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) have been measured in the livers of developing rats from late foetal life to maturity. 2. The effect of altering the weaning time on some enzymes associated with lipogenesis has been studied. Weaning rats at 15 days of age instead of 21 days results in an immediate increase in the activity of ;malic' enzyme (EC 1.1.1.40) whereas the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and ATP citrate lyase (EC 4.1.3.8) did not increase until 4-5 days and acetyl-CoA carboxylase 2-3 days after early weaning. Weaning rats on to an artificial-milk diet led to complete repression of the rise in activity of hepatic enzymes associated with lipogenesis normally found on weaning, except for ;malic' enzyme, which increased in activity after 20 days of age. 3. The effect of intraperitoneal injections of glucagon, cortisol, growth hormone and thyroxine on the same hepatic enzymes has been investigated. Only thyroxine had any effect on enzyme activities and caused a 20-fold increase in ;malic' enzyme activity and a twofold increase in ATP citrate lyase activity. 4. The activities of hepatic glucose 6-phosphate dehydrogenase and ;malic' enzyme are higher in adult female than in adult male rats and it has been shown that this sex difference in enzyme activities is due to both male and female sex hormones. 5. Hepatic malate, citrate, pyruvate, glucose 6-phosphate and phosphoenolpyruvate concentrations have been measured throughout development. 6. The results are discussed in relation to the dietary and hormonal control of hepatic enzyme activities during development.  相似文献   

6.
1. The highest blood concentrations of ketone bodies were found at 5 days of age, after which time the concentration fell to reach the adult value by 30 days of age. 2. Both mitochondrial and cytoplasmic hydroxymethylglutaryl-CoA synthase activities were detected, with highest activities being found in the mitochondria at all stages of development. Activity of the mitochondrial enzyme increases rapidly immediately after birth, showing a maximum at 15 days of age, thereafter falling to adult values. The cytoplasmic enzyme, on the other hand, increased steadily in activity after birth to reach a maximum at 40 days of age, after which time activity fell to adult values. 3. Both mitochondrial and cytoplasmic aceto-acetyl-CoA thiolase activities were detected, with the mitochondrial enzyme having considerably higher activities at all stages of development. The developmental patterns for both enzymes were very similar to those for the corresponding hydroxymethylglutaryl-CoA synthases. 4. The activity of heart acetoacetyl-CoA transferase remains constant from late foetal life until the end of the suckling period, after which time there is a gradual threefold increase in activity to reach the adult values. The activity of brain 3-oxo acid CoA-transferase increases steadily after birth, reaching a maximum at 30 days of age, thereafter decreasing to adult values, which are similar to foetal activities. Although at all stages of development the specific activity of the heart enzyme is higher than that of brain, the total enzymic capacity of the brain is higher than that of the heart during the suckling period.  相似文献   

7.
Subcellular organellles from livers of rats three days prenatal to 50 weeks postnatal were separated on sucrose gradients. The peroxisomes had a constant density of 1.243 g/ml throughout the life of the animal. The density of the mitochondria changed from about 1.236 g/ml at birth to a constant value of 1.200 g/ml after two weeks. The peroxisomal and mitochondrial fatty acid beta-oxidation and the peroxisomal and supernatant activities of catalase and glycerol-3-phosphate dehydrogenase were measured at each age, as well as the peroxisomal core enzyme, urate oxidase, and the mitochondrial matrix enzyme, glutamate dehydrogenase. All of these activities were very low or undetectable before birth. Mitochondrial glutamate dehydrogenase and peroxisomal urate oxidase reached maximal activities per g of liver at two and five weeks of age, respectively. Fatty acid beta-oxidation in both peroxisomes and mitochondria and peroxisomal glycerol-3-phosphate dehydrogenase exhibited maximum activities per g of liver between one and two weeks of age before weaning and then decreased to steady state levels in the adult. Peroxisomal beta-oxidation accounted for at least 10% of the total beta-oxidation activity in the young rat liver, but became 30% of the total in the liver of the adult female and 20% in the adult male due to a decrease in mitochondrial beta-oxidation after two weeks of age. The greatest change in beta-oxidation was in the mitochondrial fraction rather than in the peroxisomes. At two weeks of age, four times as much beta-oxidation activity was in the mitochondria as in the peroxisomal fraction. Peroxisomal glycerol-3-phosphate dehydrogenase activity accounted for 5% to 7% of the total activity in animals younger than one week, but only 1% to 2% in animals older than one week. Up to three weeks of age, 85% to 90% of the liver catalase was recovered in the peroxisomes. The activity of peroxisomal catalase per g of rat liver remained constant after three weeks of age, but the total activity of catalase further increased 2.5- to 3-fold, and all of the increased activity was in the supernatant fraction.  相似文献   

8.
Changes in the specific activities of acetyl-CoA-carboxylase (ACX), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G-6-PD) were compared to changes in de novo lipogenesis measured by in vivo incorporation of [3H] of tritiated water into fatty acids of liver and of perirenal and dorsal subcutaneous adipose tissues. In the adipose tissues, the specific activities of the three enzymes rather closely followed fluctuations in the rate of fatty acid synthesis. In the liver, ACX and especially ME activities were satisfactory indicators of de novo lipogenesis; G-6-PD activity did not depend on de novo lipogenesis.  相似文献   

9.
This study was designed to monitor the developmental changes in insulinemia and lipogenic enzyme activities in both inguinal adipose tissue and liver during suckling (7, 9, 14, and 17 days of age) and weaning (22 and 30 days of age) on to either a low-fat or a high-fat diet in lean (Fa/fa) and obese (fa/fa) rats. Tissues were removed through surgery and genotypes were retrospectively determined. During suckling, there was no difference in liver enzyme activities between the two groups. In contrast, adipose tissue fatty acid synthetase was increased by 50% and citrate cleavage enzyme and malic enzyme by 30% by 9 days of age. By 17 days of age, there was a threefold elevation in these enzyme activities and 6-phosphogluconic dehydrogenase and a twofold increase in glucose-6-phosphate dehydrogenase per inguinal fat pad in fa/fa versus Fa/fa. Consistent with these results, fat pad weight was increased by 20%, 50%, and 100% at 9, 14, and 17 days of age, respectively, in obese as compared to lean pups. However only by 17 days of age could a slight but significant increase in insulin level be detected in obese pups. Enlargement of inguinal fat pad accelerated after weaning on to a low-fat diet and still more after weaning on to a high-fat diet. Weaning on to a low-fat diet elicited an induction of hepatic lipogenic enzymes two or three times greater in fa/fa than in lean pups, while weaning on to a high-fat diet blunted the differences between genotypes. The lipogenic enzyme activities displayed per total inguinal fat were three to ten times greater in obese than in lean pups, regardless of the diet. However, adipose tissue lipogenic enzyme activities were much lower after weaning on to a high-fat than on to a low-fat diet in obese pups. The high-fat diet was as effective as the low-fat diet in triggering hyperinsulinemia in obese pups. The increased adipose tissue capacity for lipogenesis, starting during the suckling period, could play an important etiologic role in the development and maintenance of obesity in the Zucker rat.-Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high-fat diet in Zucker rats.  相似文献   

10.
The activities of several enzymes possibly implicated in lipogenesis were measured in the soluble fraction of homogenates of liver and adipose tissue of embryonic and growing chicks. The activities of adipose-tissue enzymes showed little or no change. The activities of hepatic hexose monophosphate-shunt dehydrogenases, malate dehydrogenase, 3-phosphoglyceraldehyde dehydrogenase and NAD-linked α-glycerophosphate dehydrogenase also showed little or no change. Isocitrate dehydrogenase activity in liver rose to a peak on the day of hatching and fell to half the peak value during the next 12 days, where it remained to 26 days after hatching. The activities of `malic' enzyme and citrate-cleavage enzyme showed very low stable values in embryonic liver and remarkable rises during the early part of the post-hatching period. An 85-fold increase in the activity of `malic' enzyme activity was completed in 7 days and a 15-fold increase in that of citrate-cleavage enzyme in 5 days. The activities then attained were maintained up to 26 days after hatching. 2. The increases in the activities of hepatic citrate-cleavage enzyme and `malic' enzyme occurred simultaneously with a marked increase in lipogenesis, suggesting a relationship of these enzymes to lipogenesis in chick liver. By contrast, activity of the hexose monophosphate-shunt dehydrogenases does not appear to be thus associated.  相似文献   

11.
1. The rate of mammary-gland lipogenesis measured in vivo from 3H2O was suppressed after decreasing the milk demand by decreasing the number of pups from ten to two or three, as well as by giving diets containing lipid [Grigor & Warren (1980) Biochem. J. 188, 61-65]. 2. The specific activities of the lipogenic enzymes fatty acid synthase, glucose 6-phosphate dehydrogenase and 'malic' enzyme increased between 6- and 10-fold in the mammary gland and between 2- and 3-fold in the livers during the first 10 days of lactation. The increases in specific activity coupled with the doubling of liver mass which occurred during pregnancy and lactation resulted in considerable differences in total liver activities when compared with virgin animals. 3. Although consumption of a diet containing 20% peanut oil suppressed the activities of the three lipogenic enzymes in the livers, only the 'malic' enzyme was affected in the mammary glands. 4. In contrast, decreased milk demand did not affect the specific activities of any of the liver enzymes, whereas it resulted in suppression of all three lipogenic enzymes of the mammary glands. There was no effect on either the cytoplasmic malate dehydrogenase or the lactate dehydrogenase of the mammary gland. 5. In all the experiments performed, the activity of the fatty acid synthase correlated with the amount of material precipitated by the rabbit antibody raised against rat fatty acid synthase.  相似文献   

12.
Abstract— Three enzymes of cholesterol ester metabolism, a cholesterol-esterifying enzyme which incorporates free fatty acids into cholesterol esters without participation of CoA, and two cholesterol ester hydrolases with differing pH optima, all showed distinct changes in developing rat brains. The specific activity of the esterifying enzyme was approx. 20 percent of the adult level at birth, increased gradually to the adult level by 20 days of age and remained constant thereafter. The pH 4.2 hydrolase at birth also had a specific activity of about 20 per cent of the adult level but it increased rapidly to reach a peak at 13 days, by which time the activity had increased eight-fold. The activity declined somewhat thereafter to reach the adult level by 23–30 days. In contrast, there already was 60 per cent of the adult specific activity of the pH 6.6 cholesterol ester hydrolase at birth. The activity remained constant until 12 days and then doubled during the next two weeks, reaching a broad peak, then declining slightly to reach the adult activity by 50 days. Therefore, the developmental changes of both of the hydrolases appeared to be related to the process of myelination. The period of active myelination (10–30 days) was characterized by the sharp rise in the activity of pH 6.6 cholesterol ester hydrolase and by the rapid decrease of pH 4.2 cholesterol ester hydrolase.  相似文献   

13.
Gestational and postnatal changes of microsomal NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase activities were examined in rat brain. The specific activity of NADH:cytochrome b5 reductase was high at 18-19 days of gestational age, decreased to a minimum at 4 to 6 days after birth and increased thereafter. An essentially similar developmental pattern was observed for the specific activity of NADPH:cytochrome c reductase. In contrast, the specific activities of these reductases in liver microsomes were low, did not display a peak during gestation and increased steadily to a maximum at 40-50 days after birth. The rate of incorporation of [2-14C]malonyl-CoA into palmitoyl-CoA in brain microsomes was found to be high in the foetus, sharply decreased to a minimum at the time of birth and increased thereafter. The activity of fatty acid elongation in liver microsomes was much less than that in brain during gestation and increased rapidly after birth to values at 50-60 days 20-fold greater than the foetal activity. NADH and NADPH were equally effective for brain microsomal fatty acid elongation. Regional distribution of cytochrome reductase activities and the activity of fatty acid elongation showed the lowest specific activity in cerebellum. These results suggest that brain microsomal electron transport may be correlated with the developmental alteration in fatty acid elongation.  相似文献   

14.
Brown adipose tissue (BAT) lipogenesis (fatty acid, glycerol and CO2 synthesis) and its morphology determined by optical microscopy, were studied in guinea pigs and rats during intra-uterine life and during the suckling period. Following the receptor induction and after the commencement of the hormone sensitive adenylate-cyclase/lipase system (i.e. on the 60th day in guinea pigs, on the 20th day in rats), the fetal BAT releases fatty acids (NEFA) and is capable of allowing the non-shivering thermogenesis. When the maternal diet and, consequently, the fetal or neonatal BAT are supplied with considerable linoleic acid, NEFA contain a large proportion of essential fatty acids. In vitro, the greater the linoleic acid concentration in these NEFA, the less inhibited is the lipogenesis from (2-14C) pyruvate. Thus, in periods just preceding or succeeding birth, fatty acid and glycerol synthesis are higher when the feto-maternal and/or the milk supply are enriched in linoleic acid than when they contain a large proportion of endogenous fatty acids. Morphological studies indicate that the adipose cell evolution could be nonidentical in BAT more or less enriched in essential fatty acids. Linoleic enriched BAT (of animals born to females kept on a sunflower oil diet) seemed to be in a healthy physiological state at birth, perhaps due to rapid lipid renewal and synthesis in their membranes. The control BAT (of animals born to females kept on a lard diet) appeared loaded with fats and in a worse conservation state at the same age.  相似文献   

15.
The aim of this study was to determine the time-course incorporation of dietary n-3 polyunsaturated fatty acids into phospholipids of tissues highly involved in lipid and energy metabolism: the liver and the white (WAT) and brown (BAT) adipose tissues. Rats were fed a diet supplemented with 19% fish oil for up to 4 weeks. Minor changes in the relative proportions of tissue phospholipids were observed in the three tissues. Fish-oil feeding induced rapid and large replacements of n-6 fatty acids by n-3 fatty acids. In liver, the 22:6n-3 level increased progressively and reached a plateau after 3 (phosphatidylethanolamine and phosphatidylserine) or 7 days (phosphatidylcholine and phosphatidylinositol). In contrast, the 20:5n-3 level transiently peaked in all liver phospholipids at days 1–3 before reaching a plateau after day 7. In WAT as in BAT the level of n-3 fatty acids increased progressively and reached in all phospholipids a plateau after day 7. As a general trend, in each phospholipid class the 22:6n-3/20:5n-3 ratio was higher in liver than in the two adipose tissues. This study shows that each dietary n-3 fatty acid is incorporated very rapidly into liver, WAT, and BAT phospholipids but according to time courses and at levels that depend simultaneously on the tissue and phospholipid class considered.  相似文献   

16.
M Sj?blom  L Pilstr?m  J M?rland 《Enzyme》1978,23(2):108-115
The ontogenetic development of the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenases (ALDH I and II) was followed in rats. ADH could be detected just before birth and increased gradually to reach 82% of adult values at 47 days. ALDH I and II were present from day 15 of gestation, increased rapidly at birth, and reached 80-90% adult values at 47 days. The ratio between ALDH and ADH activities decreased gradually during ontogenesis. The relative subcellular distribution of all enzymes was identical before birth, 7 days after birth and in adults. The placental activities of ADH and ALDH I and II were studied at 15 and 20 days of pregnancy. ADH could not be detected in placentas. Low activities of ALDH I and II were present in placentas studied at 15 days of gestation, and still lower activities were found in placenta at 20 days.  相似文献   

17.
We report a sensitive and rapid radioassay method for p-aminobenzoic acid N-acetyltransferase. The principle of this assay involves acetylation of p-aminobenzoic acid with [1-14C] labeled acetyl coenzyme A and direct extraction of enzymically formed radioactive p-acetamidobenzoic acid into nonaqueous scintillation fluid. Using this radiometric assay, hepatic and extrahepatic tissue distributions from rat and rabbit were studied. Rabbit blastocyst and endometrial N-acetyltransferase specific activities were equivalent to hepatic activities. Perinatal development studies in rats and rabbits revealed that fetal and neonatal animals are capable of N-acetylation. Rat liver developmental studies exhibited two peaks of activity with the first peak occurring in the late fetus followed by a second peak 3 days after birth. Rabbit fetal and neonatal enzyme activity increased to adult levels by the second week after birth in liver and gut, however, lung showed a different developmental pattern. These studies demonstrate that fetal extrahepatic tissues, like adult tissues, play an important role in N-acetylation.  相似文献   

18.
Lipogenic response to feeding was measured in vivo in liver, epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), during the development of obesity in gold-thioglucose (GTG)-injected mice. The fatty acid synthesis after a meal was higher in all tissues of GTG-treated mice on a total-tissue basis, but the magnitude of this increase varied, depending on the tissue and the time after the initiation of obesity. Lipogenesis in BAT from GTG mice was double that of control mice for the first 2 weeks, but subsequently decreased to near control values. In WAT, lipogenesis after feeding was highest 2-4 weeks after GTG injection, and in liver, lipid synthesis in fed obese mice was greatest at 7-12 weeks after the induction of obesity. The post-prandial insulin concentration was increased after 2 weeks of obesity, and serum glucose concentration was higher in fed obese mice after 4 weeks. These results indicate that increased lipogenesis in GTG-injected mice may be due to an increase in insulin concentration after feeding and that insulin resistance (assessed by lipogenic response to insulin release) is apparent in BAT before WAT and liver.  相似文献   

19.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

20.
Glucose transporter ontogenesis is likely to play a key role in glucose uptake by foetal tissues in order to satisfy their energy requirements. We thus investigated developmental changes in the bovine heart and perirenal adipose tissue in two glucose transporter isoforms, namely GLUT1 and GLUT4, the latter being responsible for the regulation of glucose uptake by insulin. Other key players of the glucose/insulin axis were also assessed. Plasma glucose concentration in the foetus was lower at 8 and 8.5 months of age than previously. In the heart, GLUT1 protein level markedly decreased between 3 and 4 months of age, whereas the number of insulin and IGF-I binding sites continually decreased, especially between 7 and 8 or 8.5 months of age. On the contrary, the GLUT4 level increased until 8 months of age and remained high until 2 weeks after birth. The activities of enzymes of glucose metabolism (namely phosphofructokinase [PFK] and lactate dehydrogenase [LDH]) increased throughout gestation and reached a plateau at 6 and 8.5 months of age for PFK and LDH, respectively. The activities of enzymes involved in fatty acid metabolism increased especially at birth. In perirenal adipose tissue, high mitochondrial activity was detected before birth which is a characteristic of brown adipose tissue. Furthermore, lipoprotein lipase activity and GLUT4 protein level markedly increased to reach a maximum at 6-7 and 8 months of age, and sharply decreased thereafter, whereas GLUT1 protein level increased between 6 and 7 months of age. In conclusion, considerable changes in the regulation of the insulin/glucose axis were observed from 6 months onwards of foetal development in both the heart and adipose tissue of cattle, which probably alters the potential of these tissues to use glucose or fat as energy sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号