首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.  相似文献   

2.
Wang K  Li W  Guo J  Zou J  Li Y  Zhang L 《Bioresource technology》2011,102(9):5528-5532
Spatial differences and temporal changes in biological activity characteristics were investigated in a static reactor using intermittent aeration during the sewage sludge composting process. Pumice was proposed as a bulking agent in the composting of sewage sludge. Variations in temperature, moisture, oxygen level, volatile solids, specific oxygen uptake rate (SOUR) and dehydrogenase activity (DHA) were determined during 28 days of composting. The peak temperature in the upper region of the reactor was 10 °C higher than that at the bottom. The moisture level in the middle region was significantly higher than that of other positions. Analysis of SOUR and DHA indicated that the lowest level of sludge stability was at the bottom region. These spatial and temporal differences in biochemical dynamics in the static system could extend the composting period and affect product uniformity.  相似文献   

3.
In the present study a biotrickling filter (BTF) with countercurrent gas/liquid flow packed with open-pore polyurethane foam — as a carrier of Thiobacillus thioparus (DSMZ5368) — was subjected to various starvation regimes such as non-contaminant loading, idleness, and complete shutdown. During the starvation periods specific oxygen uptake rates of microorganisms (SOUR) on packing were monitored. The BTF was subjected to non-contaminant loading (up to 16 h), cyclic non-contaminant loading (for 4 days) and gas shut-off (up to 24 h), and it recovered to its pre-starvation removal efficiency within a 2 ~ 3 h period after resuming normal operating conditions. The recovery time values obtained during the runs in which these starvation regimes were imposed could be indirectly correlated with the corresponding SOUR values suggesting that the recovery time after such starvation regimes are dependent on the degree to which the aerobic biological activity has been reduced as a result of the imposed starvation regime. In the case of the complete shutdown of the BTF, the recovery time increased substantially after 1 and 2 days of complete shutdown, and after 5 days of complete shutdown the pre-starvation removal efficiency was not achieved even after 12 days of normal operation.  相似文献   

4.
1. The specific respiration rate of 13 chironomid taxa and Chaoborus were measured to test the hypothesis of the relation between a species' ability to regulate their oxygen uptake and their distributional patterns among nine study lakes in British Columbia, Canada.
2. Respiration patterns of individual taxa were modelled using piecewise linear regression with break point and simple hyperbolic functions. Three types of respiration curves were identified: (i) classical oxy-conformers (e.g. littoral Cricotopus ) which cannot sustain a sufficient oxygen uptake with decreasing oxygen availability; (ii) oxy-regulators (e.g. profundal Chironomus ) which can regulate and maintain a constant respiration until a certain critical point and (iii) oxy-stressors ( Micropsectra ) which increase their respiration rate with decreasing oxygen availability until a critical point.
3. Respiration was measured at two different temperatures (10 and 20 °C), and over the range of oxygen saturation conditions studied here (0–90%) mean Q 10 values varied from 1.3 to 2.5.
4. The results show that different chironomid taxa have varying sensitivity to low oxygen concentrations and different respiratory responses to increased temperature. The critical point increased to higher oxygen saturation for six taxa, decreased for one taxon and was unchanged for two taxa.
5. The results illustrate one of the possible biological mechanisms behind the use of chironomids as temperature and climate indicators in palaeoecological studies by exploring the link between temperature and respiration physiology.  相似文献   

5.
Biological stability of the Municipal Solid Waste (MSW) is assessed under tropical climatic condition using landfill lysimeters. Various landfill operating conditions and two different substrates were employed. Solid waste samples collected during different time intervals of landfill operation assessed for volatile solids (VS), organic carbon (OC), specific oxygen uptake rate (SOUR), and water extractable components. Organic carbon achieved faster stabilization than the nitrogen content in MSW within the various landfill operating conditions. At the end of 960 days of lysimeter operation, the MSW from different landfills were aerobically and anaerobically stable and results comparable with compost. Further, bioreactor landfill given better biological stability and high methane content than other landfill operating conditions with continuous leachate treatment is compelling benefit.  相似文献   

6.
A laboratory procedure using a simple respirometric technique was evaluated to determine the microbial toxicity in soil of three toxicant compounds: two pesticides, chlorpyrifos and glyphosate; and diesel oil. The microbial toxicity was tested using the specific oxygen uptake rate (SOUR) method, evaluating the soil samples for both the reduction in maximum SOUR (SOURmax) and the cumulative oxygen demands after 20 h (OD20). Consumption rate curves were produced for the lowest concentrations assessed: diesel (2460 ppm), chlorpyrifos (62.5 ppm), and glyphosate (250 ppm) (limiting amounts considered as local soil contamination). In comparison with the control, these showed drastic reductions in SOURmax, demonstrating the high sensitivity of this SOUR method. The SOURmax provides a better indication of the microbial toxicity of these contaminants compared to the OD20 because of the different effects of these toxic compounds on microbial communities in the soil. Increasing concentrations of these toxic compounds resulted in different responses, evaluated as percentage inhibition by these different xenobiotic compounds. For these reasons, the microbial toxicity of xenobiotic compounds can be better recognized with SOURmax as compared to other respirometric methodologies.  相似文献   

7.
Relationships between the parameters of external respiration (minute volume and respiration rate) and those of internal, tissue respiration (oxygen consumption, arteriovenous oxygen difference and efficiency of oxygen uptake) were studied during a period of acute hypoxia and upon its completion. The subjects were exposed to hypoxia for 25 min using oxygen-nitrogen hypoxic gas mixtures (HGMs) differing in oxygen content (8 and 12%, HGM-8 and HGM-12, respectively). From the third to the fifth minutes of exposure to HGM-8, the respiration minute volume (RMV) was found to increase by 51 ± 33% as compared to the background value; however, the body’s oxygen consumption (OC) was 35 ± 22% reduced. Afterwards, OC grew to reach, from the 20th to the 25th min of hypoxia, 108 ± 21% of the background value and 181% of the value determined from the third to the fifth minutes of hypoxia. OC growth was accompanied by an insignificant RMV increase (by 12%) as compared to the level determined from the third to the fifth minutes of hypoxia, whereas the efficiency of oxygen uptake from the arterial blood increased by 75% for the same period. RMV growth from the third to the fifth minutes of hypoxia occurred as expense result of a higher breathing depth; at the same time, the respiration rate decreased as compared to the background value. By the period from the 20th to the 25th min of exposure to HGM-8, the respiration rate increased by 21% as compared to the period from the third to the fifth minutes of hypoxia. The efficiency of oxygen uptake from the arterial blood remained higher than the background value for at least 5 min after completion of the exposure to HGM-8. During the same period, the ventilation equivalent, an indicator of the efficiency of external respiration, i.e., of oxygen supply to the body, was significantly lower than the background value. During the exposure to HGM-12, RMV increased to a lesser extent than on exposure to HGM-8, however, the efficiency of oxygen uptake was higher during exposure to HGM-12; therefore, OC was also higher in the latter case. Therefore, the assumption that, during hypoxia, intensified external respiration (ventilatory response) itself compensates oxygen deficiency in inhaled air is revised. Ventilatory response is only a portion of the entire functional system of respiration (both external and tissue respiration). The role of ventilatory response is important for conditioning the tissue respiration rearrangement to eliminate deficiency of oxygen consumption during hypoxia. The retained higher oxygen uptake from the arterial blood during the period after completion of hypoxic treatment testifies to the adaptive implication of changes in tissue respiration; the same is confirmed by a reduced ventilation equivalent after hypoxia, which is indicative of the growing efficiency of external respiration, i.e., of an improved oxygen supply to the body.  相似文献   

8.
This study aims at developing a modified green bioflocculant (GBF) for membrane fouling control and enhanced phosphorus removal in a conventional aerated submerged membrane bioreactor (SMBR) to treat a high strength domestic wastewater (primary sewage treated effluent) for reuse. The GBF was evaluated based on long-term operation of a lab-scale SMBR. These results showed that SMBR system could achieve nearly zero membrane fouling at a very low dose of GBF addition (500 mg/day) with less backwash frequency (2 times/day with 2-min duration). The transmembrane pressure only increased by 2.5 kPa after 70 days of operation. The SMBR could also remove more than 95% and 99.5% dissolved organic carbon and total phosphorus, respectively. From the respiration tests, it was evident that GBF not only had no negative impact on biomass but also led to high oxygen uptake rate (OUR) (>30 mg O2/L h) and stable specific oxygen uptake rate (SOUR). These results also indicated that GBF had no effect on nitrogen removal and nitrification process.  相似文献   

9.
In a bid to identify suitable microbial indicators of compost stability, the process evolution during windrow composting of poultry manure (PM), green waste (GW) and biowaste was studied. Treatments were monitored with regard to abiotic factors, respiration activity (determined using the SOUR test) and functional microflora. The composting process went through typical changes in temperature, moisture content and microbial properties, despite the inherent feedstock differences. Nitrobacter and pathogen indicators varied as a monotonous function of processing time. Some microbial groups have shown a potential to serve as fingerprints of the different process stages, but still they should be examined in context with respirometric tests and abiotic parameters. Respiration activity reflected well the process stage, verifying the value of respirometric tests to access compost stability. SOUR values below 1 mg O2/g VS/h were achieved for the PM and the GW compost.  相似文献   

10.
As spent sulfidic caustic (SSC) from petroleum plants contains a high concentration of alkalinity and sulfur compounds, SSC can be applied in sewage treatment system as an electron donor for autotrophic denitrification. In our previous study, the reuse of SSC in the biological nitrogen process was successful, and some neutralization may be required for stable treatment performance. In this study, the pH of SSC was neutralized to 12.0 from 13.3, and the modified Ludzack-Ettinger process was conducted for 90 days with the municipal wastewater. Some toxic effects of SSC on microorganisms were tested via a specific oxygen uptake rate (SOUR) assay. According to the SOUR assay, as compared with no SSC injection condition, SOUR was reduced by approximately 5.4% when 4 mL SSC/L was injected and the effective concentration of a toxicant causing 50% inhibition of the microorganism’s activity (EC50) was 22.6 mL/L. During the days of operation, the COD removal and nitrification efficiency were over 53.0 and 98.2%, respectively. The TN removal efficiency was 56.6% and the nitrogen removal rate (NRR) was 0.15 kg/m3·d when the hydraulic retention time (HRT) in the anoxic tank was 3 h. The ratio of nitrifying bacteria was unaffected by the HRT, and Nitrobacter spp. and Nitrospira genus existed at similar ratios. The ratio of T. denitrificans increased after the injection of SSC and was approximately 6.5%.  相似文献   

11.
Abstract. Oxygen uptake characteristics of the roots of three Rumex species were compared, and related to kinetics of the respiratory system and to root anatomy. The observed differences could not be explained by differences in fundamental characteristics of the oxygen uptake system: with all three species, cytochrome-mediated respiration contributed 70% and cyanide-insensitive (alternative) respiration 30% of the total respiration rate, and apparent Km values of cytochrome oxidase were lower than those obtained for the alternative oxidase in all cases. However, differences in critical oxygen pressure for respiration (COPR) and in apparent Km for oxygen, were strongly correlated with differences in root porosity and root diameter. Km(O2) values at high and low temperatures were determined, and from Arrhenius plots of oxygen uptake rates between 11 and 32°C, the role of diffusional impedance could be estimated. Root respiration of Rumex maritimus and R. crispus , both with high root porosity, but differing in root diameter, had a low Km for oxygen (3–7 mmol m−3). In contrast with this were the responses of R. thvrsiflorus , which has thin roots but low root porosity: a high Km (10-20 mmol m−3) was found at all temperatures. The role of diffusional impedance as a function of temperature in oxygen uptake rate by the three species is discussed and related to the differential resistance of the species towards flooding.  相似文献   

12.
The aim of this work was to develop simple and fast tests to predict anaerobic biogasification potential (ABP) of ingestates and digestates from a biogas plant. Forty-six samples of both ingestates and digestates were collected within an eight-month observation period and were analyzed in terms of biological and chemical parameters, namely, ABP test, oxygen demand in a 20-h respirometric test (OD20), total solids (TS), volatile solids (VS), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), ammonia, cell solubles (CS), acid detergent fibers (ADF), lignin (ADL), cellulose, and hemicellulose. Considering both quantitative (VS and TOC) and qualitative aspects (OD20 and CS) of organic matter (OM), four models (linear regressions; 0.80相似文献   

13.
The potential for PHB (poly-beta-hydroxybutyrate) to serve as the electron donor for effective simultaneous nitrification and denitrification (SND) was investigated in a 2-L sequencing batch reactor (SBR) using a mixed culture and acetate as the organic substrate. During the feast period (i.e., acetate present), heterotrophic respiration activity was high and nitrification was prevented due to the inability of nitrifying bacteria to compete with heterotrophs for oxygen. Once acetate was depleted the oxidation rate of PHB was up to 6 times slower than that of soluble acetate and nitrification could proceed due to the decreased competition for oxygen. The slow nature of PHB degradation meant that it was an effective substrate for SND, as it was oxidised at a similar rate to ammonium and was therefore available for SND throughout the entire aerobic period. The percentage of nitrogen removed via SND increased at lower DO concentrations during the famine period, with up to 78% SND achieved at a DO concentration of 0.5 mg L(-1). However, the increased percentage of SND at a low DO concentration was compromised by a 2-times slower rate of nitrogen removal. A moderate DO concentration of 1 mg L(-1) was optimal for both SND efficiency (61%) and rate (4.4 mmol N x Cmol x(-1) x h(-1)). Electron flux analysis showed that the period of highest SND activity occurred during the first hour of the aerobic famine period, when the specific oxygen uptake rate (SOUR) was highest. It is postulated that a high SOUR due to NH(4) (+) and PHB oxidation decreases oxygen penetration into the floc, creating larger zones for anoxic denitrification. The accumulation of nitrate towards the end of the SND period showed that SND was finally limited by the rate of denitrification. As PHB degradation was found to follow first-order kinetics (df(PHB)/dt = -0.19 x f(PHB)), higher PHB concentrations would be expected to drive SND faster by increasing the availability rate of reducing power and reducing penetration of oxygen into the floc, due to the corresponding increased SOUR. Process control techniques to accumulate higher internal PHB concentrations to improve PHB-driven SND are discussed.  相似文献   

14.
Ethanol induced germination in several partly after-ripened dormant lines of Avena fatua L. The dose-response curves for the stimulation of germination and for oxygen uptake were similar, indicating that ethanol may stimulate germination by promoting oxygen uptake. A time-sequence study showed that ethanol stimulated oxygen uptake by as much as 70% prior to the first visible signs of germination. A similar methanol treatment failed to induce germination or significantly elevate oxygen uptake, indicating that the promotive effects of ethanol are not common to all alcohols. The stimulation of both germination and oxygen uptake by ethanol was not inhibited significantly by salicylhydroxamic acid, an inhibitor of alternative respiration. Thus, stimulation of germination and oxygen uptake by ethanol does not require the operation of the alternative pathway of respiration. Similarly, the stimulation of germination and oxygen uptake by ethanol were not inhibited by sodium azide, an inhibitor of cytochrome-mediated respiration. However, both germination and oxygen uptake were prevented when salicylhydroxamic acid and sodium azide were administered together. Thus, stimulation of these events by ethanol requires only the operation of one or other of these pathways of respiration; a specific requirement for the operation of the alternative pathway of respiration does not exist. The function of ethanol as a promoter of respiration is discussed with reference to dormancy and involvement of the Krebs cycle.  相似文献   

15.
Photorhabdus luminescens, a bacterial symbiont of entomoparasitic nematodes, was cultured in a 10 L bioreactor. Cellular density and bioluminescence were recorded and volumetric oxygen transfer coefficient (kLa) and specific oxygen transfer rates were determined during the batch process. Exponential phase of the bacterium lasted for 20 h, showing a maximum specific growth rate of 0.339 h?1 in a defined medium. Bioluminescence peaked within 21h, and was maintained until the end of the batch process (48 h). The specific oxygen uptake rate (SOUR) was high during both lag and early exponential phase, and eventually reached a stable value of 0.33 mmol g?1 h?1 during stationary phase. Maintenance of 200 rpm agitation and 1.4 volume of air per volume of medium per minute (vvm) aeration, gave rise to a kLa value of 39.5 h?1. This kLa value was sufficient to meet the oxygen demand of 14.4 g L?1 (DCW) biomass. This research is particularly relevant since there are no reports available on SOURs of symbiotic bacteria or their nematode partners. The insight gained through this study will be useful during the development of a submerged monoxenic culture of Heterorhabditis bacteriophora and its symbiotic bacterium P. luminescens in bioreactors.  相似文献   

16.
This is the first granulation study except Ferguson [Ferguson LN. Anaerobic codigestion of aircraft deicing fluid and microaerobic studies. M.S. Thesis. Milwaukee, WI, USA: Marquette University; 1999] to develop coupled granules by using a mixture of suspended anaerobic and aerobic cultures exposed to alternating cyclic anaerobic/microaerobic/aerobic conditions. Coupled granules with median sizes of 1.28–1.86 mm and settling velocities of 31–39 m/h were developed, which were comparable to those of both anaerobic and aerobic granules. Coupled granules displayed noteworthy specific methanogenic activity (SMA) and specific oxygen uptake rate (SOUR) as 14–42 mL CH4/g VSS h and 6–47 mg DO/g VSS h, respectively, indicating that they were composed of both anaerobic and aerobic cultures.  相似文献   

17.
Oxygen uptake and citric acid production by Candida lipolytica Y 1095   总被引:1,自引:0,他引:1  
The rates of oxygen uptake and oxygen transfer during cell growth and citric acid production by Candida lipolytica Y 1095 were determined. The maximum cell growth rate, 1.43 g cell/L . h, and volumetric oxygen uptake rate, 343 mg O(2)/L . h, occurred approximately 21 to 22 h after inoculation. At the time of maximum oxygen uptake, the biomass concentration was 1.3% w/v and the specific oxygen uptake rate was slightly greater than 26 mg O(2)/g cell . h. The specific oxygen uptake rate decreased to approximately 3 mg O(2)/g cell . h by the end of the growth phase.During citric acid production, as the concentration of dissolved oxygen was increased from 20% to 80% saturation, the specific oxygen uptake and specific citric acid productivity (mg citric acid/g cell . h) increased by 160% and 71%, respectively, at a biomass concentration of 3% w/v. At a biomass concentration of 5% w/v, the specific oxygen uptake and specific citric acid productivity increased by 230% and 82%, respectively, over the same range of dissolved oxygen concentrations.The effect of dissolved oxygen on citric acid yields and productivities was also determined. Citric acid yields appeared to be independent of dissolved oxygen concentration during the initial production phase; however, volumetric productivity (g citric acid/L . h) increased sharply with an increase in dissolved oxygen. During the second or subsequent production phase, citric acid yields increased by approximately 50%, but productivities decreased by roughly the same percentage due to a loss of cell viability under prolonged nitrogen-deficient conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
We investigated the effect of temperature and irradiance on leaf respiration (R, non-photorespiratory mitochondrial CO(2) release) of snow gum (Eucalyptus pauciflora Sieb. ex Spreng). Seedlings were hydroponically grown under constant 20 degrees C, controlled-environment conditions. Measurements of R (using the Laisk method) and photosynthesis (at 37 Pa CO(2)) were made at several irradiances (0-2,000 micromol photons m(-2) s(-1)) and temperatures (6 degrees C-30 degrees C). At 15 degrees C to 30 degrees C, substantial inhibition of R occurred at 12 micromol photons m(-2) s(-1), with maximum inhibition occurring at 100 to 200 micromol photons m(-2) s(-1). Higher irradiance had little additional effect on R at these moderate temperatures. The irradiance necessary to maximally inhibit R at 6 degrees C to 10 degrees C was lower than that at 15 degrees C to 30 degrees C. Moreover, although R was inhibited by low irradiance at 6 degrees C to 10 degrees C, it recovered with progressive increases in irradiance. The temperature sensitivity of R was greater in darkness than under bright light. At 30 degrees C and high irradiance, light-inhibited rates of R represented 2% of gross CO(2) uptake (v(c)), whereas photorespiratory CO(2) release was approximately 20% of v(c). If light had not inhibited leaf respiration at 30 degrees C and high irradiance, R would have represented 11% of v(c). Variations in light inhibition of R can therefore have a substantial impact on the proportion of photosynthesis that is respired. We conclude that the rate of R in the light is highly variable, being dependent on irradiance and temperature.  相似文献   

19.
Biotin production by fermentation of recombinant Sphingomonas sp./pSP304 was investigated. A complex medium containing 60g/l of glycerol and 30g/l of yeast extract was suitable for biotin production. Biotin was produced in the late logarithmic or stationary phase after glycerol starvation. The optimum pH value for biotin production was 7.0. When the dissolved oxygen concentration (DO) was controlled at a constant level, the biotin concentration produced after 120h was significantly lower than that obtained in a test tube culture. Therefore, a batchwise jar-fermentor culture with a constant agitation speed and without DO control was conducted for investigating the effect of agitation conditions on biotin production. Six types of impeller were tested: turbine-blade type, turbo-lift type, rotating mesh type (EGSTAR((R))), screw with draft tube type, Maxblend((R))type, and anchor type. With some impellers, agitation speed was also changed. Both the maximum cell concentration and biotin production varied depending on agitation conditions. Relatively high cell concentrations were attained with four of the impeller types, turbine-blade type, rotating mesh type, Maxblend((R)) type, and anchor type. Among these impellers, the turbine-blade impeller with sintered sparger was suitable for biotin production. After 120h, the cell concentration reached an OD(660) of 43 and a biotin concentration of 66mg/l was obtained, which was comparable with the results from the test tube culture. Morphological variation was also observed depending on the agitation conditions: oval-shaped, rod-shaped, and elongated-shaped cells. Biotin production was relatively high in slightly long rod-shape cells but low in elongated cells. The difference in morphology appeared to depend on the shear stress. It was found that biotin production was strongly correlated with cell length and the oxygen transfer coefficient (k(L)a); cell lengths in the range 4-7μm and k(L)a values in the range 1.5-2.0/min were found to be suitable for biotin production in jar-fermentor culture.  相似文献   

20.
Abstract Rates of oxygen uptake were measured in leaves of Saxifraga cernua which had been exposed to an 18-h photoperiod. These rates were compared to those in plants which had been exposed to continuous light. Rates of total dark respiration and alternative pathway respiration measured at the end of the photoperiod gradually decreased over the initial 3 d of exposure to an 18-h photoperiod. Thereafter, respiratory rates were constant. Rates of total dark respiration and alternative pathway respiration decreased during the 6h dark period. Rates of normal and alternative pathway respiration are equally affected during the dark period. The respiratory rates had reached a new minimum level 3 d after the initiation of a dark period. These results suggest that respiration rates in arctic plants are high because of the long photoperiod in the arctic. The kinetics of photoperiod induced changes in respiration are slow enough to suggest the involvement of the biological clock in setting respiration rates. Indeed, total dark respiration and alternative pathway respiration show a definite circadian rhythm. Free-running experiments show that normal respiration changes much less (has a smaller amplitude of variation) than alternative pathway respiration and that alternative pathway respiration accounts for most of the rhythmicity of respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号