首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been shown to prevent or reverse hypertrophy of the LV in several models of left ventricular hypertrophy. The aim of the present study was to determine whether treatment with simvastatin can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) remodeling in NG-nitro-L-arginine methyl ester(L-NAME)-induced hypertension. Four groups of rats were investigated: control, simvastatin (10 mg/kg), L-NAME (40 mg/kg) and L-NAME + simvastatin (in corresponding doses). Animals were sacrificed and studied after 6 weeks of treatment. The decrease of NO-synthase activity in the LV, kidney and brain was associated with hypertension, LV hypertrophy and fibrosis development and remodeling of the aorta in the L-NAME group. Simvastatin attenuated the inhibition of NO-synthase activity in kidney and brain, partly prevented hypertension development and reduced the concentration of coenzyme Q in the LV. Nevertheless, myocardial hypertrophy, fibrosis and enhancement of DNA concentration in the LV, and remodeling of the aorta were not prevented by simultaneous simvastatin treatment in the L-NAME treated animals.We conclude that the HMG-CoA reductase inhibitor simvastatin improved nitric oxide production and partially prevented hypertension development, without preventing remodeling of the left ventricle and aorta in NO-deficient hypertension.  相似文献   

2.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the ileum of rats was inactivated by Mg2+-ATP and reversibly reactivated by cytoplasmic activator from the liver. The mevalonate kinase reaction was presumably not involved in this inactivation. Studies of nucleotide specificity for the inactivation revealed that ATP was most effective in the reaction among the nucleotides tested. In contrast to the hepatic microsomal HMG-CoA reductase, more than one-half of intestinal reductase existed in an active form. These observations indicated the presence of phosphorylation-dephosphorylation mechanism for modulation of intestinal HMG-CoA reductase.  相似文献   

3.
Simvastatin is an inhibitor of HMG-CoA reductase used in the treatment of hypercholesterolemia. In the present study simvastatin-induced contraction was observed in rat aortic thoracic rings, this effect increased when the endothelium was removed and when NO synthase was blocked by L-NOARG (3 x 10(-5) M). The contractile effect of simvastatin on intact aortic rings diminished when cyclo-oxygenase was inhibited with indomethacin (10(-5) M). Also in the presence of endothelium, pretreatment with mevalonate (1 mM), the product of HMG-CoA reductase activity, significantly inhibited the contraction. In other experiments carried out on endothelium-removed preparations and in medium containing the calcium antagonist, diltiazem (10(-5) and 10(-6) M), the contraction dose-response curves were significantly reduced and the same happened in the presence of the inhibitor of sarcoplasmic reticulum Ca-2+-ATPase, cyclopiazonic acid (CPA) (3 x 10(-6) M). The results suggest that simvastatin might increase intracellular calcium concentration. This effect could lead to an activation of NO synthase and cyclooxygenase pathways in endothelial cells and to contraction in vascular smooth muscle cells. This rise in Ca2+ concentration could be due to an inhibition of isoprenoid synthesis prevented by mevalonate.  相似文献   

4.
According to current concepts, hypertension and hyperlipidemia cause vascular damage that leads to a hypercoagulative state. In this study, we investigated whether spontaneously hypertensive and hyperlipidemic rats (SHHR) can be a useful experimental model for complications in combined hypertension and hyperlipidemia, by comparing coagulative and fibrinolytic activities in SHHR with those in spontaneously hypertensive rats (SHR) and spontaneously hyperlipidemic rats (HLR). We measured coagulation and fibrinolysis markers in plasma and levels of fibrinogen and prothrombin mRNA in livers of eight-month-old male Wistar Kyoto rats (WKY), Sprague-Dawley rats (SD), SHR, HLR and SHHR. The plasma levels of fibrinogen in SHR, HLR and SHHR were significantly higher than those in WKY and SD, and were highest in SHHR. Higher plasma levels of antithrombin III and plasminogen were detected in increasing order in SHR, HLR and SHHR as compared to those in WKY and SD. Hepatic mRNA expressions of fibrinogen chains and prothrombin were enhanced in SHR, HLR and SHHR, resulting in increased plasma fibrinogen levels in SHHR. These results suggest that hypertension and hyperlipidemia can each cause hypercoagulation, with hyperlipidemia being a stronger factor than hypertension. Since a greater hypercoagulative state is a complication of combined hypertension and hyperlipidemia, the SHHR model is a good system for studying the early stage of atherosclerosis ensuing from hyperfibrinogenemia.  相似文献   

5.
Radiation inactivation analysis of liver pieces yielded a target size of 210 kDa for hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase [S)-mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34) from rats fed a normal diet. Feeding a diet containing mevinolin and colestipol, which causes a marked increase in enzyme activity, resulted in a reduction of the target size to 120 kDa. These results are consistent with those obtained by radiation inactivation and immunoblotting analysis of isolated microsomes and suggest that the increase in HMG-CoA reductase activity caused by these dietary agents is accompanied by a change from a dimer to a monomer form of the enzyme.  相似文献   

6.
7.
Zhou SH  Ling HY  Tian SW  Liu XQ  Wang BX  Hu B 《生理学报》2005,57(5):627-635
为观察17β-雌二醇(17beta-estradiol,17β-E2)对去卵巢胰岛素抵抗(insulin resistance,IR)大鼠主动脉结构和舒缩功能的影响及其可能机制,成年雌性Sprague-Dawley大鼠卵巢切除后,高果糖喂养8周诱导IR,同时给予生理剂量的17β-E2(30μg/kg),每天皮下注射一次,并检测IR相关指标。大鼠胸主动脉石蜡切片,HE染色,图像分析系统测定其结构。采用血管环灌流法,观察各组大鼠胸主动脉环对新福林(L-phenylephrine,PE)的收缩反应和对ACh、硝普钠(sodium nitroprusside,SNP)的舒张反应以及一氧化氮合酶(nitric oxide synthase,NOS)抑制剂N-硝基-L-精氨酸甲脂(N-nitrl-L-arginine methylester,L-NAME)对卵巢切除+果糖喂养+17β-E2组大鼠胸主动脉ACh的舒张反应的影响;检测各组大鼠一氧化氮(nitric oxide,NO)含量。结果显示:(1)17β-E2能防止高果糖诱导的去卵巢IR人鼠收缩压升高、高胰岛素血症和胰岛素敏感性下降;(2)各组火鼠胸主动脉的结构无显著性差异;(3)卵巢切除+果糖喂养组大鼠与卵巢切除组或果糖喂养组相比,血清NO显著降低,胸主动脉对PE的收缩反应显著增强,对ACh的舒张反应显著降低,17β-E2能逆转上述改变,L-NAME可部分阻断17β-E2的这种作用;(4)各组大鼠胸主动脉对SNP的舒张反应和去内皮后对PE的收缩反应均无显著差异。以上结果表明,17β-E2能抑制高果糖诱导的去卵巢IR大鼠血管舒缩功能的紊乱,其机制一方面可能是部分通过血管内皮细胞NOS途径促进NO的释放,保护内皮细胞;另一方面可能是通过降低血压,血清胰岛素水平,改善IR所致。  相似文献   

8.
The relaxation effect of cilostazol, a phosphodiesterase III inhibitor, on the thoracic aorta was investigated. Cilostazol induced the relaxation of the thoracic aorta precontracted by phenylephrine in a concentration-dependent manner. The concentration-dependent relaxation was shifted to the right in the endothelium denuded aorta compared with that of intact endothelium, suggesting that this relaxation was partly dependent on endothelium. Cilostazol-induced relaxation of thoracic aorta tone was reversed by treatment with N(G)-nitro L-arginine (L-NNA), a competitive inhibitor of nitric oxide (NO) synthase. Cilostazol also significantly increased the NO level in the porcine thoracic aorta. In rats treated with cilostazol, the urinary excretion of nitrites, a stable metabolite of NO, and basal production of NO of the aortic ring were significantly greater than in those without treatment. These findings indicate that cilostazol-induced vasodilation of the rat thoracic aorta was dependent on the endothelium, which released NO from aortic endothelial cells.  相似文献   

9.
We determined the role of Fluvastatin: HMG-CoA reductase inhibitor on the regression of atherosclerosis following removal of dietary cholesterol. Male rabbits fed a 0.5% cholesterol diet for 12 weeks were divided into three groups: A1, hypercholesterolemic; A2, fed a regular diet for an 12 additional weeks; and A3, fed a regular diet with fluvastatin (2 mg/kg/day). Fluvastatin treatment (A3) did not affect serum lipid levels compared with A2. However, it decreased the atherosclerotic area in the aortic arch and decreased total and esterified cholesterol concentrations in the descending aorta. Tone-related basal NO release in the thoracic aorta was larger in A3 than in A2. eNOS mRNA in vessel was determined by competitive RT-PCR assay. It increased in A1, compared with normal aorta and decreased in A2; however, it did not decrease in A3. This is the first report of a decrease in eNOS mRNA in atherosclerosis after removal of dietary cholesterol and a reversal of it by a HMG-CoA reductase inhibitor, which may contribute to the regression of atherosclerosis.  相似文献   

10.
In the present study, we tested the hypothesis that ANG II causes a greater vasoconstriction in obese Zucker rats, a model of type 2 diabetes, with mild hypertension. Measurement of isometric tension in isolated aortic rings with intact endothelium revealed a modest but not significantly greater ANG II-induced contraction in obese than lean rats. Removal of endothelium or inhibition of nitric oxide (NO) synthase by N(G)-nitro-L-arginine methyl ester (L-NAME) enhanced 1) ANG II-induced contraction in both lean and obese rats, being significantly greater in obese rats (E(max) g/g tissue, denuded: lean 572 +/- 40 vs. obese 664 +/- 16; L-NAME: lean 535 +/- 14 vs. obese 818 +/- 23) and 2) ANG II sensitivity in obese compared with lean rats, as revealed by the pD(2) values. Endothelin-1 and KCl elicited similar contractions in the aortic rings of lean and obese rats. ACh, a NO-dependent relaxing hormone, produced greater relaxation in the aortic rings of obese than lean rats, whereas sodium nitroprusside, an NO donor, elicited similar relaxations in both rat strains. The expression of the ANG type 1 (AT(1)) receptor protein and mRNA in the endothelium-intact aorta was significantly greater in obese than lean rats, whereas the endothelium-denuded rings expressed modest but not significantly greater levels of AT(1) receptors in obese than lean rats. The endothelial NO synthase protein and mRNA expression levels were higher in the aorta of obese than lean animals. We conclude that, although ANG II produces greater vasoconstriction in obese rat aortic rings, enhanced endothelial AT(1) receptor-mediated NO production appears to counteract the increased ANG II-induced vasoconstriction, suggesting that arterial AT(1) receptor may not be a contributing factor to hypertension in this model of obesity.  相似文献   

11.
Hyperhomocysteinemia, an elevation of blood homocysteine levels, is a metabolic disorder associated with dysfunction of multiple organs. We previously demonstrated that hyperhomocysteinemia stimulated hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase leading to hepatic lipid accumulation and liver injury. The liver plays an important role in cholesterol biosynthesis and overall homeostasis. HMG-CoA reductase catalyzes the rate-limiting step in cholesterol biosynthesis. Hepatic HMG-CoA reductase is a major target for lowering cholesterol levels in patients with hypercholesterolemia. The aim of the present study was to examine the effect of berberine, a plant-derived alkaloid, on hepatic cholesterol biosynthesis in hyperhomocysteinemic rats and to identify the underlying mechanism. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. HMG-CoA reductase activity was markedly elevated in the liver of hyperhomocysteinemic rats, which was accompanied by hepatic lipid accumulation. Activation of HMG-CoA reductase was caused by an increase in its gene expression and a reduction in its phosphorylation (an inactive form of the enzyme). Treatment of hyperhomocysteinemic rats with berberine for 5 days inhibited HMG-CoA reductase activity and reduced hepatic cholesterol content. Such an inhibitory effect was mediated by increased phosphorylation of HMG-CoA reductase. Berberine treatment also improved liver function. These results suggest that berberine regulates hepatic cholesterol biosynthesis via increased phosphorylation of HMG-CoA reductase. Berberine may be therapeutically useful for the management of cholesterol homeostasis.  相似文献   

12.
Incubation of the four purified HMG-CoA reductase phosphatases with the sodium salts of eleven polycarboxylic acids at concentrations of 40 mM, inactivated the enzymes to different degrees depending on the structure of the carboxylic acids. Maleate, malonate, oxalate, citrate, and hydroxymethylglutarate produced full inactivation at the concentration tested. When the four phosphatases were incubated with these acids, a concentration-dependent inactivation was observed. Fumarate, the trans isomer of maleate, produced little inactivation of the four phosphatases. Mevalonate did not inactivate at all. A relationship between those concentrations of acid that produced a 50% inactivation and the logarithm of the stability constant of Mg2+ or Mn2+ salts of polycarboxylic acids was observed. When reductase phosphatases were incubated with mixtures of polycarboxylic sodium salts and Mg2+ or Mn2+, an increase in the molar ratio divalent cation/carboxylic acid determined an increase in the four reductase phosphatase activities. The inactivating effect of citrate was on the phosphatases (high and low forms) and not on the substrates (HMG-CoA reductase, phosphorylase, and glycogen synthase). Reactivation of the citrate-inactivated phosphatases by Mn2+ and Mg2+ depended on the phosphorylated substrates, Mn2+ being the better activator. It is concluded that HMG-CoA reductase phosphatases are metalloenzymes.  相似文献   

13.
Nitric oxide (NO) plays an important role in the regulation of vascular tone, and evidence suggests that endothelial-dependent relaxation, possibly mediated via NO, is impaired in diabetes. However, the role of the endothelium in arterial pressure control early in diabetes, before dysfunction develops, is not known. This was evaluated in the present study by comparing the responses to induction of diabetes in vehicle-treated rats (D, n = 7) vs. rats chronically treated with N(G)-nitro-L-arginine methyl ester (L-NAME; D+L, n = 8). A nondiabetic group also was treated with L-NAME (L, n = 7) to control for L-NAME effects over time, independent of diabetes. After baseline measurements, rats were given either vehicle or L-NAME (10 microg. kg(-1). min(-1) iv) infusion throughout the experiment. Six days later, streptozotocin (60 mg/kg iv) was administered, followed by a 3-wk diabetic study period. Induction of diabetes in the D+L rats caused a marked and progressive increase in mean arterial pressure throughout the diabetic period, averaging approximately 70 mmHg greater than in the D rats and approximately 20 mmHg greater than in the L rats. Glomerular filtration rate and renal plasma flow tended to increase during diabetes, but this trend was reversed in the D+L rats. In addition, plasma renin activity increased in the D and D+L rats during week 1 of diabetes but then returned to control in the D rats, while continuing to increase in the D+L rats. These results suggest that, in the early stages of diabetes, NO synthesis is important to prevent hypertension from developing, possibly through actions to maintain glomerular filtration and suppress renin secretion.  相似文献   

14.
There are few reports describing the mechanism of HDL-elevating action of HMG-CoA reductase inhibitors (statins). As it is considered that the key step of HDL production is the secretion of apolipoprotein A-I (apoA-I), we investigated the effect of statins on apoA-I synthesis and secretion by HepG2 cell to elucidate the mechanism of the action. Each statin induced apoA-I expression (mRNA and protein) dose-dependently: the rank order of the apoA-I induction pitavastatin (3 μM) > simvastatin (10 μM) > atorvastatin (50 μM). The induction of apoA-I by statins disappeared with addition of mevalonate, which indicates that the effect is HMG-CoA reductase inhibition-dependent. Based on HMG-CoA reductase inhibition, pitavastatin-induced apoA-I more efficiently than simvastatin and atorvastatin. Further study revealed that pitavastatin increased ABCA1 mRNA in HMG-CoA reductase-dependent manner and that Rho and Rho kinase inhibitor (C3T and Y27632) increased apoA-I production in the HepG2 cells. These results suggest that pitavastatin efficiently increases apoA-I in the culture medium of HepG2 cells by promoting apoA-I production through inhibition of HMG-CoA reductase and suppression of Rho activity and by protecting apoA-I from catabolism through ABCA1 induction and lipidation of apoA-I.  相似文献   

15.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

16.
A close relationship between oxidative stress, endothelial dysfunction, and hypoadiponectinemia has been observed. The present study was performed to investigate how glutathione depletion via buthionine sulfoximine (BSO) administration affects endothelial function and adiponectin levels in rats. Acetylcholine (Ach)-induced vasodilation was significantly enhanced in BSO-treated rats, compared with control rats. This was completely abolished by L-NAME, and Ach-induced vasodilation was not observed in the aorta without endothelium. These results suggest that Ach-induced hyper-relaxation of the aorta in BSO-treated rats is completely dependent on the presence of endothelium and mediated by changes in eNOS activity. Catalase significantly inhibited this relaxation to Ach and no effect of catalase on sodium nitroprusside-induced relaxation of the aorta without endothelium was observed in BSO-treated rats. Thus, hyper-relaxation of the aorta in BSO-treated rats is likely caused by H2O2 in addition to NO produced by the endothelium via an eNOS-dependent mechanism. Hypoadiponectinemia and decreased levels of adiponectin mRNA in adipose tissue were observed in BSO-treated rats. Protein expression of eNOS and SODs (SOD-1 and SOD-2) in the aorta was increased and plasma NOx levels were decreased in BSO-treated rats. Our results suggest that oxidative stress induced by BSO causes eNOS uncoupling and hyper-relaxation by producing H2O2, and that BSO-induced oxidative stress causes hypoadiponectinemia, probably by increasing H2O2 production in adipose tissue.  相似文献   

17.
Administration of xenobiotics to rats results in hypercholesterolemia and in the induction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and malic enzyme. To investigate the mechanism of the induction of the enzymes by xenobiotics, the effects of xenobiotics on gene expressions for HMG-CoA reductase, malic enzyme, and cytochrome P-450 in rat liver and in cultured hepatocyte were investigated. The treatment of rats with polychlorinated biphenyls (PCB) as a xenobiotic induced mRNAs for HMG-CoA reductase and malic enzyme as well as CYP2B1/2 (cytochrome P-450b/e). Other xenobiotics, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), and chloretone, also increased HMG-CoA reductase mRNA. In an investigation of diurnal rhythm of mRNA for HMG-CoA reductase, the induction by PCB was observed in a dark period. Induced expressions of HMG-CoA reductase gene and malic enzyme gene by PCB were observed in primary cultured rat hepatocytes and showed that the action of PCB on the gene expression relating to lipid metabolism was directed on hepatocytes. The induction was observed only in hepatocytes cultured on Engelbreth-Holm-Swarm sarcoma basement membrane gel (EHS-gel), not on type I collagen, which is usually used for monolayer culture of hepatocytes. The induction of CYP2B1/2 gene expression also was observed only in the cells cultured on EHS-gel. The induction of HMG-CoA reductase and malic enzyme by PCB required dexamethasone. However, the addition of dexamethasone per se to medium containing insulin did not show an inductive effect on levels of mRNA for HMG-CoA reductase and malic enzyme. From the data of diurnal variation and hepatocyte culture experiment, HMG-CoA reductase and malic enzyme are considered to be induced by PCB through the so-called "permissive effect" of glucocorticoid.  相似文献   

18.
19.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

20.

Background

Obesity is recognized as a leading global health problem, correlated with an increased risk for several chronic diseases. One strategy for weight control management includes the use of vegetables rich in bioactive compounds to counteract weight gain, improve the antioxidant status and stimulate lipid catabolism.

Aim of the Study

The aim of this study was to investigate the role of Raphanus sativus Sango sprout juice (SSJ), a Brassica extraordinarily rich in anthocyanins (AC) and isothiocyanates (ITCs), in a non-genetic model of obesity (high fat diet-HFD induced).

Methods

Control groups were fed with HFD or regular diet (RD). After a 10-week period, animals were assigned to experimental units and treated by gavage for 28 days as follows: HFD and RD control groups (rats fed HFD or RD and treated with vehicle only) and HFD-treated groups (rats fed HFD and treated with 15, 75 or 150 mg/kg b.w. of SSJ). Body weight and food consumption were recorded and serum lipid profile was measured (total cholesterol, triglycerides, and non-esterified fatty acids). Hepatic phase-I, phase-II as well as antioxidant enzymatic activities were assessed.

Results

SSJ lowered total cholesterol level, food intake and liver weight compared with HFD rodents. SSJ at medium dose proved effective in reducing body-weight (~19 g reduction). SSJ was effective in up-regulating the antioxidant enzymes catalase, NAD(P)H:quinone reductase, oxidised glutathione reductase and superoxide dismutase, which reached or exceeded RD levels, as well as the phase II metabolic enzyme UDP-glucuronosyl transferase (up to about 43%). HFD up-regulated almost every cytochrome P450 isoform tested, and a mild down-regulation to baseline was observed after SSJ intervention.

Conclusion

This work reveals, for the first time, the antioxidant, hypolipidemic and antiobesity potential of SSJ, suggesting its use as an efficient new functional food/nutraceutical product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号