首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of arylsulphatase in the small intestine of the rat   总被引:5,自引:5,他引:0       下载免费PDF全文
1. Arylsulphatase activity was measured in stomach, proximal and distal third of small intestine, colon, liver and kidney of foetal and neonatal Sprague-Dawley rats and Swiss mice, with nitrocatechol sulphate as substrate. 2. The specific activity in the distal small intestine, but not in the stomach, proximal small intestine or colon, increased about fourfold between 5 and 16 days after birth in both conventional and germ-free rats. 3. No comparable increase occurred in the distal small intestine of the mouse. 4. The specific activity of acid phosphatase in the distal small intestine of the rat rose only slightly when the arylsulphatase activity increased. 5. The pH optimum and Michaelis constant of arylsulphatase activity of the distal small intestine were similar for 1-day-old, 9-day-old and adult rats. 6. When extracts of distal small intestine of 1-day-old and 9-day-old rats were incubated together, the arylsulphatase activities were additive.  相似文献   

2.
The effect of fasting on mucosal Na-K-ATPase activity in various regions of rat small intestine was investigated. Fasting (17--48 h) was associated with a consistent decrease in specific and total activity of Na-K-ATPase in the jejunum, the levels tending to rise more distally. No effect on the specific activities of Mg-ATPase or alkaline phosphatase was found. Fasting was also associated with incresed adrenocortical activity and with decreases in mucosal mass, protein content, and histological dimensions of the jejunum, no similar changes being found in the distal small intestine. Glucose ingestion prevented the decrease in jejunal enzyme activity associated with fasting and elevated levels in the mid and terminal small intestine of fed animals. These effects suggest that Na-K-ATPase activity in small intestinal mucosa may be, in part, inducible.  相似文献   

3.
Thyroid hormone (T3) increases Na-K-ATPase activity in rat adult alveolar type II cells via a PI3K-dependent pathway. In these cells, dopamine and beta-adrenergic agonists can stimulate Na-K-ATPase activity through either PI3K or MAPK pathways. We assessed the role of the MAPK pathway in the stimulation of Na-K-ATPase by T3. In the adult rat alveolar type II-like cell line MP48, T3 enhanced MAPK/ERK1/2 activity in a dose-dependent manner. Increased ERK1/2 phosphorylation was observed within 5 min, peaked at 20 min, and then decreased. Two MEK1/2 inhibitors, U0126 and PD-98059, each abolished the T3-induced increase in the quantity of Na-K-ATPase alpha(1)-subunit plasma membrane protein and Na-K-ATPase activity. T3 also increased the phosphorylation of MAPK/p38; however, SB-203580, a specific inhibitor of MAPK/p38 activity, did not prevent the T3-induced Na-K-ATPase activity. SP-600125, a specific inhibitor of the MAPK/JNK pathway, also did not block the T3-induced Na-K-ATPase activity. Phorbol 12-myristate 13-acetate (PMA) significantly increased ERK1/2 phosphorylation and Na-K-ATPase activity. The PMA-induced Na-K-ATPase activity was inhibited by U0126. These data indicate that activation of MAPK-ERK1/2 was required for the T3-induced increase in Na-K-ATPase activity in addition to the requirement for the PI3K pathway.  相似文献   

4.
Arginase, which catalyzes the conversion of arginine to urea and ornithine, and consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Arginine is also used for the synthesis of nitric oxide and creatine phosphate, while ornithine is used for the synthesis of polyamines and proline, and thus collagen. Arginase II mRNA and protein are abundant in the intestine (most abundant in the jejunum and less abundant in the ileum, duodenum, and colon) and kidney of the rat. In the kidney, the levels of arginase II mRNA do not change appreciably from 0 to 8 weeks of age. In contrast, arginase II mRNA and protein in the small intestine are not detectable at birth, appear at 3 weeks of age, the weaning period, and their levels increase up to 8 weeks. On the other hand, mRNAs for ornithine aminotransferase (OAT), ornithine decarboxylase, and ornithine carbamoyltransferase (OCT) are present at birth and their levels do not change much during development. Arginase II is elevated in response to a combination of bacterial lipopolysaccharide, dibutyryl cAMP, and dexamethasone in the kidney, but is not affected by these treatments in the small intestine. Immunohistochemical analysis of arginase II, OAT, and OCT in the jejunum revealed their co-localization in absorptive epithelial cells. These results show that the arginase II gene is regulated differentially in the small intestine and kidney, and suggest different roles of the enzyme in these two tissues. The co-localization of arginase II and the three ornithine-utilizing enzymes in the small intestine suggests that the enzyme is involved in the synthesis of proline, polyamines, and/or citrulline in this tissue.  相似文献   

5.
87Rb, 23Na and 31P nuclear magnetic resonance (NMR) were used to monitor changes in renal cations and energetics during the induction of hypoxia in the isolated perfused rat kidney. The NMR-determined unidirectional Rb+ flux in normoxic kidneys was shown to be a good measure of net intracellular K+ influx in the perfused rat kidney model. The changes in 87Rb, 23Na and 31P spectra following the induction of hypoxia are consistent with hypoxic depletion of intracellular adenosine triphosphate (ATP) and a subsequent decrease in Na-K-ATPase transport activity. The exponential rate constant for 87Rb+ efflux measured during Rb+ uptake in normoxic kidneys (0.12 +/- 0.01 min-1) was not significantly different to the rate constant for 87Rb+ efflux during the induction of hypoxia (0.16 +/- 0.07 min-1). We conclude that there is no direct effect of hypoxia on renal cellular membrane integrity and that renal cell sensitivity to hypoxia is due to an inability to sustain cellular ion gradients following depletion of intracellular ATP.  相似文献   

6.
7.
The ability of the gastrointestinal (GI) tract, as well as other tissues, to cope with reactive oxygen species (ROS) efflux in pathological events is determined partly by epithelial antioxidant levels. These levels are comprized of tissue antioxidant enzymes and low molecular weight antioxidants (LMWA). While glutathione levels and the activity of enzymatic antioxidants along the GI tract have been studied, the contribution of the overall LMWA to the total antioxidant capacity has not yet been determined. In this study the overall antioxidant activity in the mucosa/submucosa and muscularis/serosa of various sections along the small intestine and colon of the rat was evaluated by determining the reducing power, which reflects the total antioxidant activity derived from LMWA, using cyclic voltammetry. The activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase was also measured. The reducing power (total antioxidant activity) was higher in the mucosa/submucosa of the small intestine as compared to the mucosa/submucosa of the colon. Similarly, catalase and SOD activity in the mucosa/submucosa of the small intestine was significantly higher than in the mucosa/submucosa of the colon. Differences were also observed in the reducing power and SOD activity in the muscularis/serosa of the rat small intestine as compared to the colon. The low antioxidant capacity in the colon may facilitate reactive oxygen species (ROS)-mediated injury and lead to inflammatory diseases such as ulcerative colitis, specifically in the colon.  相似文献   

8.
Na-K-ATPase in rat cerebellar granule cells is redox sensitive   总被引:1,自引:0,他引:1  
Redox-induced regulation of the Na-K-ATPase was studied in dispersed rat cerebellar granule cells. Intracellular thiol redox state was modulated using glutathione (GSH)-conjugating agents and membrane-permeable ethyl ester of GSH (et-GSH) and Na-K-ATPase transport and hydrolytic activity monitored as a function of intracellular reduced thiol concentration. Depletion of cytosolic and mitochondrial GSH pools caused an increase in free radical production in mitochondria and rapid ATP deprivation with a subsequent decrease in transport but not hydrolytic activity of the Na-K-ATPase. Selective conjugation of cytosolic GSH did not affect free radical production and Na-K-ATPase function. Unexpectedly, overloading of cerebellar granule cells with GSH triggered global free radical burst originating most probably from GSH autooxidation. The latter was not followed by ATP depletion but resulted in suppression of active K(+) influx and a modest increase in mortality. Suppression of transport activity of the Na-K-ATPase was observed in granule cells exposed to both permeable et-GSH and impermeable GSH, with inhibitory effects of external and cytosolic GSH being additive. The obtained data indicate that redox state is a potent regulator of the Na-K-ATPase function. Shifts from an "optimal redox potential range" to higher or lower levels cause suppression of the Na-K pump activity.  相似文献   

9.
Cardiomyocyte sodium accumulation after burn injury precedes the development of myocardial contractile dysfunction. The present study examined the effects of burn injury on Na-K-ATPase activity in adult rat hearts after major burn injury and explored the hypothesis that burn-related changes in myocardial Na-K-ATPase activity are PKC dependent. A third-degree burn injury (or sham burn) was given over 40% total body surface area, and rats received lactated Ringer solution (4 ml.kg(-1).% burn(-1)). Subgroups of rats were killed 2, 4, or 24 h after burn (n = 6 rats/time period), hearts were homogenized, and Na-K-ATPase activity was determined from ouabain-sensitive phosphate generation from ATP by cardiac sarcolemmal vesicles. Additional groups of rats were studied at several times after burn to determine the time course of myocyte sodium loading and the time course of myocardial dysfunction. Additional groups of sham burn-injured and burn-injured rats were given calphostin, an inhibitor of PKC, and Na-K-ATPase activity, cell Na(+), and myocardial function were measured. Burn injury caused a progressive rise in cardiomyocyte Na(+), and myocardial Na-K-ATPase activity progressively decreased after burn, while PKC activity progressively rose. Administration of calphostin to inhibit PKC activity prevented both the burn-related decrease in myocardial Na-K-ATPase and the rise in intracellular Na(+) and improved postburn myocardial contractile performance. We conclude that burn-related inhibition of Na-K-ATPase likely contributes to the cardiomyocyte accumulation of intracellular Na(+). Since intracellular Na(+) is one determinant of electrical-mechanical recovery after insults such as burn injury, burn-related inhibition of Na-K-ATPase may be critical in postburn recovery of myocardial contractile function.  相似文献   

10.
Thymidylate (dTMP) synthase (EC 2.1.1.45) activity was measured in 100,000 x g supernatant fluid with a sensitive, rapid radio assay. The activity in normal rat liver was low (0.098-0.204 nmol/hr/mg protein). dTMP synthase specific activities in rat thymus, spleen, bone marrow, testis, lung, heart, brain, kidney, and small intestine were 6297, 1842, 1500, 788, 215, 76, 61, 39 and 24%, respectively, of that of the liver. The activity in 5-day-old rat liver was 16-fold higher than in adult. dTMP synthase activity increased in rat hepatomas to 7- to 125-fold of that of normal rat liver. There was a significant correlation between the increase in synthase activity and the proliferation rates of the hepatomas. In 8 human colon carcinomas, dTMP synthase activity increased to 2.9- to 8-fold of that of normal human colon mucosa. In leukemic leukocytes from 3 leukemia patients, activity was 8- to 10-fold higher than in normal leukocytes.  相似文献   

11.
The aim of this study was to determine the effect of changes in osmolality on the reduced renal medullary Na-K-ATPase (EC 3.6.1.3) activity of the postobstructive kidney. The effect of osmolality on renal medullary Na-K-ATPase activity was studied by incubating tissue slices from sham-operated and bilaterally obstructed rats in media with osmolality varied before enzyme isolation using sodium chloride, choline chloride, or sucrose. Both sham-operated and bilaterally obstructed rat renal medullary enzyme showed a similar increase in activity with increased osmolality due to sodium chloride. Medullary Na-K-ATPase from the postobstructive kidney also showed increased activity with osmotic changes induced by choline chloride or sucrose. It is proposed that the decrease of Na-K-ATPase activity observed after bilateral ureteral obstruction is due, at least in part, to the loss of the solute concentration gradient in the kidney.  相似文献   

12.
Renal Na-K-ATPase activity changes adaptively in response to chronic alterations in sodium reabsorption or potassium secretion, but the role of this enzyme in rapid adjustments of renal tubular Na and K transport is not known. To evaluate this question, microsomal Na-K-ATPase specific activity and kinetics were determined in the rat and guinea pig kidney after massive but short-term (3 h) sodium or potassium loading. In other experiments renal sodium handling was evaluated in hydropenic and saline-loaded rats in which enzyme synthesis was prevented by the concurrent administration of actinomycin D or cycloheximide. Saline loading increased net sodium reabsorption in both rats and guinea pigs, but microsomal Na-K-ATPase from the outer medulla (where the reabsorptive increment is greatest) did not change significantly in either species. In vitro [3H]ouabain bidint to guinea pig microsomes and apparent Km for sodium of rat microsomal Na-K-ATPase, both from outer medulla, were also unaltered. Actinomycin D and cycloheximide failed to increase sodium excretion and microsomal Na-K-ATPase remained unchanged. KCL loading resulted in a 10-fold increase in K excretion but again Na-K-ATPase specific activity (in cortex, outer medulla, and papilla), and its apparent Km for potassium were not affected. Taken together these results suggest that rapid adjustments in remal tubular Na or K transport are mediated by mechanisms that do not involve the Na-K-ATPase enzyme system.  相似文献   

13.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

14.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

15.
The Na-K-ATPase is vital for maintenance of lens transparency. Past studies using intact lens suggested the involvement of tyrosine kinases in short-term regulation of Na-K-ATPase. Furthermore, in vitro phosphorylation of a lens epithelial membrane preparation by Src family kinases (SFKs), a family of nonreceptor tyrosine kinases, resulted in modification of Na-K-ATPase activity. Here, the effect of purinergic agonists, ATP and UTP, on Na-K-ATPase function and SFK activation was examined in the rabbit lens. Na-K-ATPase function was examined using two different approaches, measurement of ouabain-sensitive potassium (86Rb) uptake by the intact lens, and Na-K-ATPase activity in lens epithelial homogenates. ATP and UTP caused a significant increase in ouabain-sensitive potassium (86Rb) uptake. Na-K-ATPase activity was increased in the epithelium of lenses pretreated with ATP. Lenses treated with ATP or UTP displayed activation of SFKs as evidenced by increased Western blot band density of active SFK (phosphorylated at the active loop Y416) and decreased band density of inactive SFKs (phosphorylated at the COOH terminal). A single PY416-Src immunoreactive band at 60 kDa was observed, suggesting not all Src family members are activated. Immunoprecipitation studies showed that band density of active Src, and to a lesser extent active Fyn, was significantly increased, while active Yes did not change. Preincubation of the lenses with SFK inhibitor PP2 abolished the ATP-induced increase in ouabain-sensitive potassium (86Rb) uptake. The results suggest selective activation of Src and/or Fyn is part of a signaling mechanism initiated by purinergic agonists that increases Na-K-ATPase-mediated transport in the organ-cultured lens. Src kinase; receptors  相似文献   

16.
Transport of the carcinogen benzo[a]pyrene in apical membrane vesicles (AMV) from normal human intestine, was investigated. Benzo[a]pyrene transport was found in AMV throughout the small intestine, but was greatest in colon. Evidence suggesting involvement of P-Glycoprotein (P-Gp), included (1) comparable transport of P-Gp substrate doxorubicin, (2) transport stimulation by ATP and (3) transport suppression by the P-Gp inhibitor, verapamil.  相似文献   

17.
Homogenates of rat small intestine can depolymerize macromolecular rat skin heparin (RS heparin) to products similar in size to commercial heparin [Horner (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 3469--3473]. This activity is attributed to an enzyme provisionally named 'macromolecular heparin depolymerase'. An assay for macromolecular heparin depolymerase activity in rat small intestine has been developed, based on the action of the enzyme on 35S-labelled macromolecular RS heparin. The depolymerized products are separated into two peaks by gel chromatography through columns of Bio-Gel A-15m. The amount of label in the second peak, expressed as a percentage of the total radioactivity, is the index of enzyme activity. The pH optimum was found to be 6.0 and the temperature optimum 45 degrees C. The enzyme was shown to be most stable in 50mM-Tris/maleate buffer containing 1 mM-EDTA. Macromolecular heparin depolymerase activity measured as a function of time and substrate concentration produced curves typical of an enzymic reaction. Evidence was obtained demonstrating that the activity did not originate from bacteria in the intestine. Macromolecular heparin depolymerase activity was increased by dilution and storage at 7 degrees C for 24 h. This suggests that homogenates of rat small intestine contain an unstable inhibitor of the enzyme.  相似文献   

18.
Previous experiments using cross-linked tetrameric hemoglobins (XLHb) to perfuse isolated rat kidneys showed that high-O2-affinity XLHb improved proximal tubule function more effectively than low-O2-affinity XLHb. To determine how function was improved, proximal tubule fragments were incubated with albumin, Hb34 [half-saturation point (P50) 34 Torr], or Hb13 (P50 13 Torr) with Po2 values ranging from 22 to 147 Torr. ATP content reflected O2 delivery to mitochondria. Both XLHb increased ATP, Hb34 with Po2 >or= 47 Torr and Hb13 with Po2 相似文献   

19.
Forty-eight adult hamsters were divided equally into two groups fed a control diet and a 2% cholesterol diet, respectively, under a rigid lighting (6 PM-6 AM) and feeding (6 PM-8 AM) schedule for three weeks. The cholesterol synthetic activity of the liver, stomach, small intestine, cecum, colon and kidney was measured by in vivo conversion of acetate-1-14C to cholesterol in four animals each time at 4 hour intervals. A remarkable circadian rhythm with the peak at midnight and the nadir at noon was found in the liver of the control hamsters, but was completely abolished in the cholesterol-fed animals since the activity was nearly totally suppressed at all times. The small intestine exhibited a similar rhythm with the peak at midnight but maintained a high baseline activity from 8 AM to 6 PM. Cholesterol feeding did not alter the baseline activity but reduced 17% of the peak activity. Other organs failed to show such a circadian rhythm.  相似文献   

20.
Intestine absorption of intact green fluorescent protein (GFP) and its following accumulation in the renal proximal tubule cells after its intragastric administration have been established by confocal microscopy in the rat and frog. Reabsorbed GFP was revealed in the endosomes and lysosomes of the proximal tubule cells by the methods of GFP photooxidation and immunofluorescent microscopy. The GFP intestine absorption rate and GFP accumulation in the kidney were significantly higher in the frog than in the rat. No specific fluorescence was revealed in the liver and colon cells after the GFP intragastric administration. The data obtained indicate the ability of the small intestine in the frog and rat to absorb intact proteins and an important role of the kidney in exogenous protein metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号