首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Sea-level (SL) natives acclimatizing to high altitude (HA) increase their acute ventilatory response to hypoxia (AHVR), but HA natives have values for AHVR below those for SL natives at SL (blunting). HA natives who live at SL retain some blunting of AHVR and have more marked blunting to sustained (20-min) hypoxia. This study addressed the question of what happens when HA natives resident at SL return to HA: do they acclimatize like SL natives or revert to the characteristics of HA natives? Fifteen HA natives resident at SL were studied, together with 15 SL natives as controls. Air-breathing end-tidal Pco(2) and AHVR were determined at SL. Subjects were then transported to 4,300 m, where these measurements were repeated on each of the following 5 days. There were no significant differences in the magnitude or time course of the changes in end-tidal Pco(2) and AHVR between the two groups. We conclude that HA natives normally resident at SL undergo ventilatory acclimatization to HA in the same manner as SL natives.  相似文献   

2.
The purpose of this study was to compare chemoresponses following two different intermittent hypoxia (IH) protocols in humans. Ten men underwent two 7-day courses of poikilocapnic IH. The long-duration IH (LDIH) protocol consisted of daily 60-min exposures to normobaric 12% O(2). The short-duration IH (SDIH) protocol comprised twelve 5-min bouts of 12% O(2), separated by 5-min bouts of room air, daily. Isocapnic hypoxic ventilatory response (HVR) was measured daily during the protocol and 1 and 7 days following. Hypercapnic ventilatory response (HCVR) and CO(2) threshold and sensitivity (by the modified Read rebreathing technique) were measured on days 1, 8, and 14. Following 7 days of IH, the mean HVR was significantly increased from 0.47 +/- 0.07 and 0.47 +/- 0.08 to 0.70 +/- 0.06 and 0.79 +/- 0.06 l.min(-1).%Sa(O(2))(-1) (LDIH and SDIH, respectively), where %Sa(O(2)) is percent arterial oxygen saturation. The increase in HVR reached a plateau after the third day. One week post-IH, HVR values were unchanged from baseline. HCVR increased from 3.0 +/- 0.4 to 4.0 +/- 0.5 l.min(-1).mmHg(-1). In both the hyperoxic and hypoxic modified Read rebreathing tests, the slope of the CO(2)/ventilation plot was unchanged by either intervention, but the CO(2)/ventilation curve shifted to the left following IH. There were no correlations between the changes in response to hypoxia and hypercapnia. There were no significant differences between the two IH protocols for any measures, indicating that comparable changes in chemoreflex control occur with either protocol. These results also suggest that the two methods of measuring CO(2) response are not completely concordant and that the changes in CO(2) control do not correlate with the increase in the HVR.  相似文献   

3.
Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.  相似文献   

4.
Peripheral chemoreflex function was studied in high-altitude (HA) natives at HA, in patients with chronic mountain sickness (CMS) at HA, and in sea-level (SL) natives at SL. Results were as follows. 1) Acute ventilatory responses to hypoxia (AHVR) in the HA and CMS groups were approximately one-third of those of the SL group. 2) In CMS patients, some indexes of AHVR were modestly, but significantly, lower than in healthy HA natives. 3) Prior oxygenation increased AHVR in all subject groups. 4) Neither low-dose dopamine nor somatostatin suppressed any component of ventilation that could not be suppressed by acute hyperoxia. 5) In all subject groups, the ventilatory response to hyperoxia was biphasic. Initially, ventilation fell but subsequently rose so that, by 20 min, ventilation was higher in hyperoxia than hypoxia for both HA and CMS subjects. 6) Peripheral chemoreflex stimulation of ventilation was modestly greater in HA and CMS subjects at an end-tidal Po(2) = 52.5 Torr than in SL natives at an end-tidal Po(2) = 100 Torr. 7) For the HA and CMS subjects combined, there was a strong correlation between end-tidal Pco(2) and hematocrit, which persisted after controlling for AHVR.  相似文献   

5.
Measurement of the acute hypoxic ventilatory response (AHVR) requires careful choice of the hypoxic stimulus. If the stimulus is too brief, the response may be incomplete; if the stimulus is too long, hypoxic ventilatory depression may ensue. The purpose of this study was to compare three different techniques for assessing AHVR, using different hypoxic stimuli, and also to examine the between-day variability in AHVR. Ten subjects were studied, each on six different occasions, which were >/=1 wk apart. On each occasion, AHVR was assessed using three different protocols: 1) protocol SW, which uses square waves of hypoxia; 2) protocol IS, which uses incremental steps of hypoxia; and 3) protocol RB, which simulates an isocapnic rebreathing test. Mean values for hypoxic sensitivity were 1.02 +/- 0.48, 1.15 +/- 0.55, and 0.93 +/- 0.60 (SD) l. min(-1). %(-1) for protocols SW, IS, and RB, respectively. These differed significantly (P < 0.01). The coefficients of variation for measurement of AHVR were 20, 23, and 36% for the three protocols, respectively. These were not significantly different. There was a significant physiological variation in AHVR (F (50,100) = 3.9, P < 0. 001), with a coefficient of variation of 26%. We conclude that there was relatively little systematic variation between the three protocols but that AHVR varies physiologically over time.  相似文献   

6.
Augmented hypoxic ventilatory response in men at altitude.   总被引:9,自引:0,他引:9  
To test the hypothesis that the hypoxic ventilatory response (HVR) of an individual is a constant unaffected by acclimatization, isocapnic 5-min step HVR, as delta VI/delta SaO2 (l.min-1.%-1, where VI is inspired ventilation and SaO2 is arterial O2 saturation), was tested in six normal males at sea level (SL), after 1-5 days at 3,810-m altitude (AL1-3), and three times over 1 wk after altitude exposure (PAL1-3). Equal medullary central ventilatory drive was sought at both altitudes by testing HVR after greater than 15 min of hyperoxia to eliminate possible ambient hypoxic ventilatory depression (HVD), choosing for isocapnia a P'CO2 (end tidal) elevated sufficiently to drive hyperoxic VI to 140 ml.kg-1.min-1. Mean P'CO2 was 45.4 +/- 1.7 Torr at SL and 33.3 +/- 1.8 Torr on AL3, compared with the respective resting control end-tidal PCO2 of 42.3 +/- 2.0 and 30.8 +/- 2.6 Torr. SL HVR of 0.91 +/- 0.38 was unchanged on AL1 (30 +/- 18 h) at 1.04 +/- 0.37 but rose (P less than 0.05) to 1.27 +/- 0.57 on AL2 (3.2 +/- 0.8 days) and 1.46 +/- 0.59 on AL3 (4.8 +/- 0.4 days) and remained high on PAL1 at 1.44 +/- 0.54 and PAL2 at 1.37 +/- 0.78 but not on PAL3 (days 4-7). HVR was independent of test SaO2 (range 60-90%). Hyperoxic HCVR (CO2 response) was increased on AL3 and PAL1. Arterial pH at congruent to 65% SaO2 was 7.378 +/- 0.019 at SL, 7.44 +/- 0.018 on AL2, and 7.412 +/- 0.023 on AL3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Newcomers acclimatizing to high altitude and adult male Tibetan high altitude natives have increased ventilation relative to sea level natives at sea level. However, Andean and Rocky Mountain high altitude natives have an intermediate level of ventilation lower than that of newcomers and Tibetan high altitude natives although generally higher than that of sea level natives at sea level. Because the reason for the relative hypoventilation of some high altitude native populations was unknown, a study was designed to describe ventilation from adolescence through old age in samples of Tibetan and Andean high altitude natives and to estimate the relative genetic and environmental influences. This paper compares resting ventilation and hypoxic ventilatory response (HVR) of 320 Tibetans 9–82 years of age and 542 Bolivian Aymara 13–94 years of age, native residents at 3,800–4,065 m. Tibetan resting ventilation was roughly 1.5 times higher and Tibetan HVR was roughly double that of Aymara. Greater duration of hypoxia (older age) was not an important source of variation in resting ventilation or HVR in either sample. That is, contrary to previous studies, neither sample acquired hypoventilation in the age ranges under study. Within populations, greater severity of hypoxia (lower percent of oxygen saturation of arterial hemoglobin) was associated with slightly higher resting ventilation among Tibetans and lower resting ventilation and HVR among Aymara women, although the associations accounted for just 2–7% of the variation. Between populations, the Tibetan sample was more hypoxic and had higher resting ventilation and HVR. Other systematic environmental contrasts did not appear to elevate Tibetan or depress Aymara ventilation. There was more intrapopulation genetic variation in these traits in the Tibetan than the Aymara sample. Thirty-five percent of the Tibetan, but none of the Aymara, resting ventilation variance was due to genetic differences among individuals. Thirty-one percent of the Tibetan HVR, but just 21% of the Aymara, HVR variance was due to genetic differences among individuals. Thus there is greater potential for evolutionary change in these traits in the Tibetans. Presently, there are two different ventilation phenotypes among high altitude natives as compared with sea level populations at sea level: lifelong sustained high resting ventilation and a moderate HVR among Tibetans in contrast with a slightly elevated resting ventilation and a low HVR among Aymara. Am J Phys Anthropol 104:427–447, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
In humans exposed to 8 h of isocapnic hypoxia, there is a progressive increase in ventilation that is associated with an increase in the ventilatory sensitivity to acute hypoxia. To determine the relative roles of lowered arterial PO2 and oxygen content in generating these changes, the acute hypoxic ventilatory response was determined in 11 subjects after four 8-h exposures: 1) protocol IH (isocapnic hypoxia), in which end-tidal PO2 was held at 55 Torr and end-tidal PCO2 was maintained at the preexposure value; 2) protocol PB (phlebotomy), in which 500 ml of venous blood were withdrawn; 3) protocol CO, in which carboxyhemoglobin was maintained at 10% by controlled carbon monoxide inhalation; and 4) protocol C as a control. Both hypoxic sensitivity and ventilation in the absence of hypoxia increased significantly after protocol IH (P < 0.001 and P < 0.005, respectively, ANOVA) but not after the other three protocols. This indicates that it is the reduction in arterial PO2 that is primarily important in generating the increase in the acute hypoxic ventilatory response in prolonged hypoxia. The associated reduction in arterial oxygen content is unlikely to play an important role.  相似文献   

9.
We examined whether exposure to intermittent hypoxia (IH) during wakefulness impacted on the apnea/hypopnea index (AHI) during sleep in individuals with sleep apnea. Participants were exposed to twelve 4-min episodes of hypoxia in the presence of sustained mild hypercapnia each day for 10 days. A control group was exposed to sustained mild hypercapnia for a similar duration. The intermittent hypoxia protocol was completed in the evening on day 1 and 10 and was followed by a sleep study. During all sleep studies, the change in esophageal pressure (ΔPes) from the beginning to the end of an apnea and the tidal volume immediately following apneic events were used to measure respiratory drive. Following exposure to IH on day 1 and 10, the AHI increased above baseline measures (day 1: 1.95 ± 0.42 fraction of baseline, P ≤ 0.01, vs. day 10: 1.53 ± 0.24 fraction of baseline, P < 0.06). The indexes were correlated to the hypoxic ventilatory response (HVR) measured during the IH protocol but were not correlated to the magnitude of ventilatory long-term facilitation (vLTF). Likewise, ΔPes and tidal volume measures were greater on day 1 and 10 compared with baseline (ΔPes: -8.37 ± 0.84 vs. -5.90 ± 1.30 cmH(2)0, P ≤ 0.04; tidal volume: 1,193.36 ± 101.85 vs. 1,015.14 ± 119.83 ml, P ≤ 0.01). This was not the case in the control group. Interestingly, the AHI on day 10 (0.78 ± 0.13 fraction of baseline, P ≤ 0.01) was significantly less than measures obtained during baseline and day 1 in the mild hypercapnia control group. We conclude that enhancement of the HVR initiated by exposure to IH may lead to increases in the AHI during sleep and that initiation of vLTF did not appear to impact on breathing stability. Lastly, our results suggest that repeated daily exposure to mild sustained hypercapnia may lead to a decrease in breathing events.  相似文献   

10.
Baseline ventilation, hemoglobin concentration (Hb) and P50 were significantly lower in guinea-pigs than in rats. Chronic sodium cyanate (NaOCN) administration did not significantly increase hemoglobin concentration in either guinea-pigs or rats. It decreased the P50 significantly less in guinea-pigs than in rats. The high Hb-O2 affinity experimentally induced did not modify the hypoxic ventilatory response (HVR) of guinea-pigs and rats. At the same level of acute hypoxia, HVR was significantly lower in NaOCN guinea-pigs than in NaOCN rats. Guinea-pigs, genotypically adapted animals to high altitude, displayed relatively minor ventilatory and Hb-O2 affinity changes to NaOCN, and a relatively minor HVR to acute hypoxia. They probably use tissue and biochemical adaptive mechanisms, in addition to their limited extracellular responses to successfully tolerate ambient hypoxia.  相似文献   

11.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

12.
The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were exposed during 2 wk either to hypoxia [barometric pressure (PB) = 420 mmHg] or normoxia (PB = 760 mmHg). At the end of exposure the medulla was removed to measure the concentration of nitric oxide (NO) metabolites, the expression of NMDA-NR1 receptor, and nNOS by real-time RT-PCR and Western blot. We also measured the ventilatory response [fraction of inspired O(2) (Fi(O(2))) = 0.21 and 0.08] before and after S-methyl-l-thiocitrulline treatment (SMTC, nNOS inhibitor, 10 mg/kg ip). Chronic hypoxia caused an increase in ventilation that was reduced after SMTC treatment mainly through a decrease in tidal volume (Vt) in normoxia and in acute hypoxia. However, the difference observed in the magnitude of acute hypoxic ventilatory response [minute ventilation (Ve) 8% - Ve 21%] in acclimatized mice was not different. Acclimatization to hypoxia induced a rise in NMDA receptor as well as in nNOS and NO production. In conclusion, our study provides evidence that activation of nNOS is involved in the ventilatory acclimatization to hypoxia in mice but not in the hypoxic ventilatory response (HVR) while the increased expression of NMDA receptor expression in the medulla of chronically hypoxic mice plays a role in acute HVR. These results are therefore consistent with central nervous system plasticity, partially involved in ventilatory acclimatization to hypoxia through nNOS.  相似文献   

13.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of chronic hypoxia on gender differences in physiology and neurochemistry of chemosensory pathways was studied in prepubertal and adult rats living at sea level (SL; Lyon, France) or at high altitude (HA; La Paz, Bolivia, 3,600 m). HA adult rats had higher hematocrit (Ht%), Hb concentration, resting ventilatory rate (Ve(100)), and higher tyrosine hydroxylase (TH) activity in carotid bodies (CB) than SL animals. At HA and SL, adult females had lower Ht% (46.0 +/- 0.8 vs. 50.4 +/- 0.6% at HA, P < 0.05 and 43.8 +/- 0.9 vs. 47.1 +/- 0.8% at SL, P < 0.05) and Hb (16.1 +/- 0.3 vs. 17.7 +/- 0.2 g/dl at HA, P < 0.05 and 14.5 +/- 0.3 vs. 15.6 +/- 0.1 g/dl at SL, P < 0.05) than males. Females had higher Ve(100) [170 +/- 19 vs. 109 +/- 7 ml. min(-1). 100 g(-1) at HA, P < 0.05 and 50 +/- 3 vs. 40 +/- 2 ml. min(-1). 100 g(-1) at SL, not significant (NS)] and lower CB-TH activity (1.40 +/- 0.2 vs. 3.87 +/- 0.6 pmol/20 min at HA, P < 0.05 and 0.52 +/- 0.1 vs. 0.68 +/- 0.1 pmol/20 min at SL; NS) than males at HA only. The onset of hypoxic ventilatory response during development was delayed at HA. Prepubertal HA females had higher Ve(100) than males (2 wk old, +47%) and higher CB-TH activity (3 wk old, +51%). Medullary noradrenergic groups were sex dimorphic during development at SL. Rats raised at HA had a drop of TH activity between the second and the third postnatal week in all medullary groups. In conclusion, our data support the hypothesis that the CB is the major site for sexual differentiation of the ventilatory control. Ventilatory differences appeared before puberty, and the animals bred at HA had profound alterations in the developmental process of the chemoreflex and its neural pathways. Some of these alterations are under dependence of the sex of the animal, and there is an important interaction between gender and the hypoxic environmental condition during the developmental period.  相似文献   

15.
We used genetically engineered D(2) receptor-deficient [D(2)-(-/-)] and wild-type [D(2)-(+/+)] mice to test the hypothesis that dopamine D(2) receptors modulate the ventilatory response to acute hypoxia [hypoxic ventilatory response (HVR)] and hypercapnia [hypercapnic ventilatory response (HCVR)] and time-dependent changes in ventilation during chronic hypoxia. HVR was independent of gender in D(2)-(+/+) mice and significantly greater in D(2)-(-/-) than in D(2)-(+/+) female mice. HCVR was significantly greater in female D(2)-(+/+) mice than in male D(2)-(+/+) and was greater in D(2)-(-/-) male mice than in D(2)-(+/+) male mice. Exposure to hypoxia for 2-8 days was studied in male mice only. D(2)-(+/+) mice showed time-dependent increases in "baseline" ventilation (inspired PO(2) = 214 Torr) and hypoxic stimulated ventilation (inspired PO(2) = 70 Torr) after 8 days of acclimatization to hypoxia, but D(2)-(-/-) mice did not. Hence, dopamine D(2) receptors modulate the acute HVR and HCVR in mice in a gender-specific manner and contribute to time-dependent changes in ventilation and the acute HVR during acclimatization to hypoxia.  相似文献   

16.
This study investigated whether changing sympathetic activity, acting via beta-receptors, might induce the progressive ventilatory changes observed in response to prolonged hypoxia. The responses of 10 human subjects to four 8-h protocols were compared: 1) isocapnic hypoxia (end-tidal PO2 = 50 Torr) plus 80-mg doses of oral propranolol; 2) isocapnic hypoxia, as in protocol 1, with oral placebo; 3) air breathing with propranolol; and 4) air breathing with placebo. Exposures were conducted in a chamber designed to maintain end-tidal gases constant by computer control. Ventilation (VE) was measured at regular intervals throughout. Additionally, the subjects' ventilatory hypoxic sensitivity and their residual VE during hyperoxia (5 min) were assessed at 0, 4, and 8 h by using a dynamic end-tidal forcing technique. beta-Blockade did not significantly alter either the rise in VE seen during 8 h of isocapnic hypoxia or the changes observed in the acute hypoxic ventilatory response and residual VE in hyperoxia over that period. The results do not provide evidence that changes in sympathetic activity acting via beta-receptors play a role in the mediation of ventilatory changes observed during 8 h of isocapnic hypoxia.  相似文献   

17.
We tested the hypothesis that intermittent hypoxia (IH) and/or continuous hypoxia (CH) would enhance the ventilatory response to acute hypoxia (HVR), thereby altering blood pressure (BP) and cerebral perfusion. Seven healthy volunteers were randomly selected to complete 10-12 days of IH (5-min hypoxia to 5-min normoxia repeated for 90 min) before ascending to mild CH (1,560 m) for 12 days. Seven other volunteers did not receive any IH before ascending to CH for the same 12 days. Before the IH and CH, following 12 days of CH and 12-13 days post-CH exposure, all subjects underwent a 20-min acute exposure to poikilocapnic hypoxia (inspired fraction of O(2), 0.12) in which ventilation, end-tidal gases, arterial O(2) saturation, BP, and middle cerebral artery blood flow velocity (MCAV) were measured continuously. Following the IH and CH exposures, the peak HVR was elevated and was related to the increase in BP (r = 0.66 to r = 0.88, respectively; P < 0.05) and to a reciprocal decrease in MCAV (r = 0.73 to r = 0.80 vs. preexposures; P < 0.05) during the hypoxic test. Following both IH and CH exposures, HVR, BP, and MCAV sensitivity to hypoxia were elevated compared with preexposure, with no between-group differences following the IH and/or CH conditions, or persistent effects following 12 days of sea level exposure. Our findings indicate that IH and/or mild CH can equally enhance the HVR, which, by either direct or indirect mechanisms, facilitates alterations in BP and MCAV.  相似文献   

18.
The ventilatory responses to CO(2) of high-altitude (HA) natives and patients with chronic mountain sickness (CMS) were studied and compared with sea-level (SL) natives living at SL. A multifrequency binary sequence (MFBS) in end-tidal Pco(2) was employed to separate the fast (peripheral) and slow (central) components of the chemoreflex response. MFBS was imposed against a background of both euoxia (end-tidal Po(2) of 100 Torr) and hypoxia (52.5 Torr). Both total and central chemoreflex sensitivity to CO(2) in euoxia were higher in HA and CMS subjects compared with SL subjects. Peripheral chemoreflex sensitivity to CO(2) in euoxia was higher in HA subjects than in SL subjects. Hypoxia induced a greater increase in total chemoreflex sensitivity to CO(2) in SL subjects than in HA and CMS subjects, but peripheral chemoreflex sensitivity to CO(2) in hypoxia was no greater in SL subjects than in HA and CMS subjects. Values for the slow (central) time constant were significantly greater for HA and CMS subjects than for SL subjects.  相似文献   

19.
Adaptation to intermittent hypoxia can enhance a hypoxic ventilatory response (HVR) in healthy humans. Naturally occurring oscillations in blood dopamine (DA) level may modulate these responses. We have measured ventilatory response to hypoxia relative to blood DA concentration and its precursor DOPA before and after a 2-week course of intermittent hypoxic training (IHT). Eighteen healthy male subjects (mean 22.8+/-2.1 years old) participated in the study. HVRs to isocapnic, progressive, hypoxic rebreathing were recorded and analyzed using piecewise linear approximation. Rebreathing lasted for 5-6 min until inspired O2 reached 8 to 7%. IHT consisted of three identical daily rebreathing sessions separated by 5-min breaks for 14 consecutive days. Before and after the 2-week course of IHT, blood was sampled from the antecubital vein to measure DA and DOPA content. The investigation associated pretraining high blood DA and DOPA values with low HVR (r = -0.66 and -0.75, respectively), elevated tidal volume (r = 0.58 and 0.37) and vital capacity (r = 0.69 and 0.58), and reduced respiratory frequency (r = -0.89 and -0.82). IHT produced no significant change in ventilatory responses to mild hypoxic challenge (Peto2 from 110 to 70-80 mm Hg; 1 mm Hg = 133.3 Pa) but elicited a 96% increase in ventilatory response to severe hypoxia (from 70-80 to 45 mm Hg). Changes in HVRs were not accompanied by statistically significant shifts in blood DA content (24% change), although a twofold increase in DOPA concentration was observed. Individual subject's changes in DA and DOPA content were not correlated with HVR changes when these two parameters were evaluated in relation to the IHT. We hypothesize that DA flowing to the carotid body through the blood may provoke DA autoreceptor-mediated inhibition of endogenous DA synthesis-release, as shown in our baseline data.  相似文献   

20.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号