首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present research work explores formulation design, critical scale-up considerations and bio-equivalence studies of soluble itraconazole (ITZ) in a tablet form using disordered drug delivery approach. Disordered system of ITZ with a lower viscosity grade of hydroxypropyl methyl cellulose (Pharmacoat 603) was developed for the first time and extensively characterised at three different stages, namely development of glass system, pellet coating and tablet compression using advanced analytical techniques. Complete molecular embedment of ITZ resulting in amorphisation was observed and found to be sustained until end of the real-time and accelerated stability studies. Developed formulation exhibited comparative in vitro dissolution profile (similarity factor >70) with reference product (Sporanox, Janssen Pharmaceutica) in simulated gastric fluid without enzymes. Formulation was scaled up in three batches (50,000 tablets/batch) with detailed validation of critical process parameters using process capability index method. Critical scale-up considerations like control of residual solvent content, effect of pellet size on dissolution, process variables in pellet coating, compressibility of coated pellets and cushioning effect required for desired compressibility were thoroughly discussed. Bioequivalence study of single dose of test and reference product in seven healthy human volunteers under fed condition exhibited significant bioequivalence with results (AUClast and AUC) lying between 90% confidence interval. With increase in number of subjects to 24, a significant effect on pharmacokinetic parameters of both reference as well as developed ITZ tablets was observed.  相似文献   

2.
目的为降低生产成本,保证产品质量,研究干法造粒工艺在微生态活菌片剂生产中的应用。方法测定三批干法造粒和粉末直接压片技术获得的片剂的理化指标和贮藏期间活菌数。结果干法造粒工艺生产的片剂其片重、硬度、崩解时限和干燥失重均符合生产质量要求,且提高了产品的贮藏稳定性。结论干法造粒工艺更适用于微生态活菌片剂生产。  相似文献   

3.
The larvicidal activity of an experimental formulation of Bacillus thuringiensis israelensis (Bti) against Aedes aegypti larvae was evaluated under laboratory and simulated field conditions (SFC). Samples of technical powder (TP) were assayed to establish the LC50 and the potency of the product. The larvicidal activity of the TP and the tablet (T) were evaluated under SFC to assess the efficacy and the residual activity, measured against Ae. aegypti larvae. Either a T or 250 mg of TP were added to 50 L of water in plastic containers. Containers were exposed to sunlight or kept in the shade. Results showed a LC50 of 0.26 mg/L and a potency of 750 ITU/mg. In spite of differences in the toxicity amongst TP and T samples, all of them killed 98–100% of the larvae and the mortality remained high for six months, in the shade. The replacement of 20% or 60% of the water volume did not affect the activity of the product. Seasonal differences influenced the persistence of the product in containers exposed to sunlight. Both formulations showed an excellent performance, especially when kept in the shade. The Bti tablet evaluated in this study is potentially very useful in programs to control dengue vectors.  相似文献   

4.
High cell density, high product titer mammalian cell culture is the new paradigm for production of recombinant proteins. While the typical motivation is to get a high product titer, additional undesirable outcomes often include an increase in percentage solids in the cell culture fluid (cellular debris and sub-micron colloids), thereby offering new challenges to downstream processing. This article focuses on scouting and comparison of different approaches used for clarification of cell culture fluid. The approaches include centrifugation followed by depth filtration, direct depth filtration without centrifugation and feed pretreatment with use of specially designed density gradient filtration to improve efficiency of clarification and removal of process contaminants from feed stream. The work also evaluates impact of three different pretreatment approaches, namely pH adjustment to acidic condition, metal cation (calcium phosphate) flocculation, and polycationic polymer flocculation (using polymer-I and polymer-II). The results obtained indicate that the use of pretreatment significantly improves the clarification efficiency of depth filtration. Pretreatment options like polycationic polymer-I based flocculation resulted in a >5 fold reduction in filter area requirement as well as >6 fold reduction in HCDNA while retaining acceptable recovery of the IgG (>98%). Thus, pretreatment offers a significant reduction in the depth filtration footprint (~5–6 fold decrease in filter area requirement). However, one must take into consideration the process development time required, capital cost, consumable cost, cost of the pretreatment chemical, cost of testing to demonstrate clearance of treatment agent, ease of scale-ability, and process robustness when finalizing the optimal clarification approach.  相似文献   

5.
Formulations of alginate-encapsulated mycelia are used to generate spores for mycoherbicidal application to weed-infested fields and for bulk production of spore-based products. Spore yield of such formulations is a primary determinant of product efficacy. A number of parameters of the alginate process were studied to develop an optimal alginate formulation for field application of Alternaria cassiae, a mycoherbicide for sicklepod (Cassia obtusifolia). The composition of the fermentation medium and of the filler used in formulation and the fermentation time were important variables. The addition of nutrients to the mycelial homogenate after fermentation increased sporulation but the amount and ratio of nutrients in the fermentation medium had a greater influence on spore yield from pellets. Optimal sporulation resulted from mycelia produced during a 60- to 70-h fermentation in 2.4% dehydrated potato dextrose broth and 14% V-8 vegetable juice and entrapped in pellets containing corn cob grits as the filler.  相似文献   

6.
The production of biological indicators involving bacterial sporulation and multi-step downstream processes has been described. The goal of the present work was to use fermented material as the final product in a biological indicator, thereby reducing processing steps and costs. The performance of three different inexpensive supports (vermiculite, sand, and sugarcane bagasse) was assessed by determining Bacillus atrophaeus sporulation during solid-state fermentation and by assessing the direct use of the fermentation products in the subsequent steps of the process. All three supports allowed spore production of between 107 and 109 CFU g−1. Sand proved to be the best inert support enabling the direct use of the fermented product due to its easy homogenization, filling properties, and compatibility with recovery medium. Bacterial adhesion to the sand surface was supported by biofilm formation. The resistance to sterilization of the dried fermentation product was evaluated. For dry-heat resistance (160°C), the D value was 6.6 min, and for ethylene oxide resistance (650 mg/L), the D value was 6.5 min. The cost reduction of this process was at least 48%. No previous studies have been published on the application of sand as a support in solid-state fermentation for the production of biological indicators.  相似文献   

7.
Palatability and patient acceptability are critical attributes of dispersible tablet formulation. Co-processed excipients could provide improved organoleptic profile due to rational choice of excipients and manufacturing techniques. The aim of this study was to identify the most suitable co-processed excipient to use within directly compressible dispersible tablet formulations. Nine excipients, selected based on successful manufacturability, were investigated in a randomised, preference and acceptability testing in 24 healthy adult volunteers. Excipients were classified in order of preference as follows (from most preferred): SmartEx QD100?>?F-Melt Type C?>?F-Melt Type M?>?MicroceLac?>?Ludiflash?>?CombiLac?>?Pharmaburst 500?>?Avicel HFE-102?>?Avicel PH-102. Broad differences were identified in terms of acceptability, with SmartEx QD100 being ‘very acceptable’, F-Melt Type C, F-Melt Type M and MicroceLac being ‘acceptable’, Ludiflash, CombiLac and Pharmaburst 500 being ‘neutral’ and Avicel products being ‘very unacceptable’ based on ratings using five-point hedonic scales. Organoleptic differences were ascribed to different composition and physical properties of excipients, resulting in dissimilar taste and mouth-feel. Excipients with particle size in water larger than 200–250 μm were considered poorly acceptable, which supports the use of this value as a threshold for maximum particle size of dispersible formulation. The most promising co-processed excipients for directly compressible dispersible tablets were successfully identified.  相似文献   

8.
目的研究DY芽孢杆菌发酵过程中微量元素Mn离子对芽孢形成率的影响。方法通过实验设计,调整发酵用水中锰离子的浓度,进行DY芽孢杆菌生产曲线的同步发酵分析,并对发酵终产物进行生化反应鉴定。结果实验结果显示0.08mg/L锰离子发酵浓度,显著提升了DY芽孢杆菌发酵过程中芽孢形成率,且最终发酵产物生化反应鉴定符合生产菌种原始特征。结论DY芽孢杆菌发酵过程中,除发酵培养基的选择、培养条件的控制等因素会影响芽孢形成率外,作为微量元素,适量Mn离子的引入,可以影响菌体生长曲线,促进芽孢的形成,使菌体活性更高,从而使发酵效果得到显著提升,为今后更进一步提高发酵质量提供了基础和依据。  相似文献   

9.
Spores of fungal pathogens of weeds and insects are unique in their ability to actively infect and kill their pest host. While these capabilities are advantageous in terms of their use as a contact biological control agent, or biopesticide, they also require special consideration during spore production. Directed approaches to medium optimization must consider not only spore yield but also spore qualities such as desiccation tolerance, stability as a dry preparation, and biocontrol efficacy. Nutritional conditions during culture growth and sporulation should direct the accumulation of appropriate endogenous reserves so that newly formed spores possess these advantageous qualities. Studies with the bioherbicidal fungus Colletotrichum truncatum and with the bioinsecticidal fungus Paecilomyces fumosoroseus have demonstrated the impact of nutrition on spore ‘fitness’ for use as a biological control agent. The optimization strategy used in these nutritional studies as well as a comparison of the results are presented. Received 06 February 1997/ Accepted in revised form 29 May 1997  相似文献   

10.
Immobilization of cis-epoxysuccinate hydrolase-containing E. coli for d(−)-tartaric acid production was screened by various methods. The highest recovery of activity was obtained by entrapment in κ-carrageenan gel. 23.6 g biomass/l and 43.4 g κ-carrageenan/l were the best immobilization conditions optimized by response surface methodology with 83% yield (114 U/g). Cell autolysis was observed after immobilization. Immobilized cells showed high pH (5–10) stability, thermal (up to 65°C) stability, conversion rate (>99.5%), enantioselectivity (ee > 99.6%), and were less affected by metal ions and surfactants compared with free cells. Conversion rate for immobilized cells preserved 93% after 10 repeated batches (5% for free cells).  相似文献   

11.
The majority of recombinant adeno-associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale-up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa-based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3-based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3-4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity-based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time-efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.  相似文献   

12.
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g−1, presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5′-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg−1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.  相似文献   

13.
Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation–depth filtration and the current platform process for the purification of biologics.  相似文献   

14.
Cyclodextrin glucanotransferase (CGTase) from Bacillus circulans (ATCC 21783) was immobilised on a silica-based support: purified seasand. Although adsorption of 98% was achieved, considerable desorption was encountered. This problem was minimised by crosslinking the adsorbed enzyme with glutaraldehyde. The immobilised enzyme after crosslinking could be used repeatedly for cyclodextrin (CD) production in a batch process. The activity retention was 80% at the end of the eighth cycle. The immobilised enzyme showed a shift in the pH optimum towards the alkaline side and also an improvement in the pH stability compared to the free enzyme. It catalysed the formation of β-CD as a major product. A significant amount of α-CD production was also observed on prolonged incubation. Electronic Publication  相似文献   

15.
The purpose of this research was to develop a stable fixed dose combination tablet for a model DPP-IV inhibitor and metformin hydrochloride. The dipeptidyl peptidase IV (DPP-IV) inhibitor was particularly challenging to formulate due to its significant chemical instability and moisture sensitivity. Various formulation strategies were investigated and placed on accelerated stability to determine the lead approach and critical quality attributes. The lead formulation investigated was a drug layered pellet containing the DPP-IV inhibitor, which was further coated with various seal coats and moisture barriers, then compressed into a tablet with compression aids and granulated metformin hydrochloride. The investigations revealed that the drug layered pellets compressed into a fixed dose combination tablet yielded a unique stability enhancement. The stability was highly dependent on the final tablet water content and could be further improved by the addition of moisture barrier coatings. A fundamental understanding of the key critical quality attributes for the fixed dose combination product containing a DPP-IV inhibitor and metformin hydrochloride as an oral solid dosage form were established. This research identified a formulation approach to enable a successful commercial product to be developed.  相似文献   

16.
Eastern black nightshade (Solanum ptycanthum; EBN) is a problematic weed partly due to its tolerance or resistance to certain herbicides. We examined the effects of an invert emulsion (IE) on the host range and weed control efficacy of the fungus Colletotrichum coccodes (NRRL strain 15547) for biocontrol of EBN. Greenhouse tests demonstrated that several other solanaceous weeds were also infected and killed, and field tests revealed >90% EBN control and dry weight reduction in plants treated with the fungus-IE formulation. These results demonstrate that this IE formulation can promote the efficacy of this bioherbicidal pathogen.  相似文献   

17.
There is growing interest in the development of fully integrated and continuous biomanufacturing processes for the production of monoclonal antibody products. A recent study has demonstrated the feasibility of using a two-stage countercurrent diafiltration (DF) process for continuous product formulation, but this system did not provide sufficient levels of buffer exchange for most applications. The objective of this study was to design and test a three-stage countercurrent DF system that could achieve at least 99.9% buffer exchange over 24 hr of continuous operation. Experimental data were obtained using concentrated solutions of human immunoglobulin G as a model protein, with the extent of vitamin B12 removal used to track the extent of DF. Pall Cadence™ inline concentrators with Delta 30 kD regenerated cellulose membranes were used in the three stages to achieve high conversion in a single pass. The three-stage system showed stable operation with >99.9% vitamin B12 removal and a minimal increase in pressure over the full 24 hr. Modules were effectively cleaned using sodium hydroxide, with nearly complete recovery of water permeability. A simple economic analysis was presented that accounts for the trade-offs between quantity of buffer used and membrane costs for this type of countercurrent staged DF process. The results provide important insights to the design and operation of a continuous process for antibody formulation.  相似文献   

18.
β-D -Glucose-1-phosphate (βGlc1P) is an efficient glucosyl donor for both enzymatic and chemical glycosylation reactions but is currently very costly and not available in large amounts. This article provides an efficient production method of βGlc1P from trehalose and phosphate using the thermostable trehalose phosphorylase from Thermoanaerobacter brockii. At the process temperature of 60°C, Escherichia coli expression host cells are lysed and cell treatment prior to the reaction is, therefore, not required. In this way, the theoretical maximum yield of 26% could be easily achieved. Two different purification strategies have been compared, anion exchange chromatography or carbohydrate removal by treatment with trehalase and yeast, followed by chemical phosphate precipitation. In a next step, βGlc1P was precipitated with ethanol but this did not induce crystallization, in contrast to what is observed with other glycosylphosphates. After conversion of the product to its cyclohexylammonium salt, however, crystals could be readily obtained. Although both purification methods were quantitative (>99% recovery), a large amount of product (50%) was lost during crystallization. Nevertheless, a production process for crystalline βGlc1P is now available from the cheap substrates trehalose and inorganic phosphate.  相似文献   

19.
Marine substrata possess cues that influence the behavior of fouling organisms. Initial adhesion of fouling algal zoospores to surfaces is also theorized to depend primarily upon interactions between substrata and spore cell bodies and flagellar membranes. In an effort to identify cues and surface characteristics that influence spore settlement and early development, the effects of bioactive echinoderm extracts, surface charge, and surface hydrophobicity were examined individually and in tandem on zoospore settlement and germination in Hincksia irregularis. Experiments utilizing 96-well plastic culture plates confirmed that spore settlement and germination were significantly affected by surface charge and hydrophobicity as well as by echinoderm metabolites, both individually and in tandem. Spore settlement rates in the dark over 30?min were >?400% higher on hydrophobic surfaces than on positively and negatively charged surfaces. Spore germling numbers were >?300% higher on hydrophobic surfaces than on positively and negatively charged surfaces when spores were allowed to settle in the light for 30?min and the settled spores allowed to subsequently germinate for 24?h. Spore germling numbers were consistently >?25% higher on hydrophobic surfaces than on positively and negatively charged surfaces when equal numbers of spores were allowed to completely settle in the light and subsequently germinate for 24?h. H. irregularis germ tube lengths were also significantly longer on positively charged plates than on negatively charged plates. All echinoderm extracts tested had significant effects on germination and settlement at levels below those of estimated ecological concentrations. Short-term (30?min) exposure and subsequent germination experiments indicated that higher concentrations of extracts had rapid toxic effects on algal spores. Synchronous effects of echinoderm extracts and plate charge upon spore settlement varied considerably and did not show a strong dose response relationship. Long-term (24?h) exposure of spores to echinoderm extracts had dosage dependent effects on germination and spore survival. The results of this study indicate that H. irregularis spores possess the capacity for complex responses to their environment, utilizing combined cues of surface charge, surface energy and biochemistry to determine where to settle and germinate. These responses may aid spores in the detection of suitable substrata and conditions for settlement in the marine environment.  相似文献   

20.
This paper presents results obtained on the evaluation of static composting process aimed at bioremediation of the hazardous solid olive mill waste (OMW). The static composting process carried out in gas-permeable polyethylene bags followed the fluctuating temperature and oxygen profiles similar to those seen in aerated composting systems. Static composting resulted in apparent increases and decreases in values for total nitrogen and C:N ratios respectively during the process. The amount of nitrogen (>3%) in the composting end product was in agreement with the Italian legislation (Decreto Legislativo 29 aprile 2010, n. 75) specification for nitrogen fertilizer. A gradual decrease in polyphenols during the storage of compost resulted in a non-phytotoxic composted organic matter high in humic substances. Different respirometric tests also stated high biological stability of the end compost product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号