首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (α) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 ≤ α ≤ 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 ≤ α ≤ 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from ≥0.2 to ≤0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal.  相似文献   

2.
This paper reports the development of microencapsulated bacteriophage Felix O1 for oral delivery using a chitosan-alginate-CaCl2 system. In vitro studies were used to determine the effects of simulated gastric fluid (SGF) and bile salts on the viability of free and encapsulated phage. Free phage Felix O1 was found to be extremely sensitive to acidic environments and was not detectable after a 5-min exposure to pHs below 3.7. In contrast, the number of microencapsulated phage decreased by 0.67 log units only, even at pH 2.4, for the same period of incubation. The viable count of microencapsulated phage decreased only 2.58 log units during a 1-h exposure to SGF with pepsin at pH 2.4. After 3 h of incubation in 1 and 2% bile solutions, the free phage count decreased by 1.29 and 1.67 log units, respectively, while the viability of encapsulated phage was fully maintained. Encapsulated phage was completely released from the microspheres upon exposure to simulated intestinal fluid (pH 6.8) within 6 h. The encapsulated phage in wet microspheres retained full viability when stored at 4°C for the duration of the testing period (6 weeks). With the use of trehalose as a stabilizing agent, the microencapsulated phage in dried form had a 12.6% survival rate after storage for 6 weeks. The current encapsulation technique enables a large proportion of bacteriophage Felix O1 to remain bioactive in a simulated gastrointestinal tract environment, which indicates that these microspheres may facilitate delivery of therapeutic phage to the gut.  相似文献   

3.
The suspension-feeding cichlids Oreochromis aureus (blue tilapia) and Oreochromis esculentus (ngege tilapia) are able to selectively retain small food particles. The gill rakers and microbranchiospines of these species have been assumed to function as filters. However, surgical removal of these oral structures, which also removed associated mucus, did not significantly affect the total number of 11–200 μm particles ingested by the fish. This result supports the hypothesis that the branchial arch surfaces themselves play an important role in crossflow filtration. Both species selectively retained microspheres greater than 50 μm with gill rakers and microbranchiospines intact as well as removed, demonstrating that neither these structures nor mucus are necessary for size selectivity to occur during biological crossflow filtration. After removal of the gill rakers and microbranchiospines, O. esculentus retained significantly more microspheres 51–70 μm in diameter and fewer 91–130 μm microspheres compared to retention with intact structures, but the particle size selectivity of O. aureus was not affected significantly. These results support conclusions from previous computational fluid dynamics simulations indicating that particle size can have marked effects on particle trajectory and retention inside the fish oropharyngeal cavity during crossflow filtration. The substantial inter-individual variability in particle retention by suspension-feeding fish is an unexplored area of research with the potential to increase our understanding of the factors influencing particle retention during biological filtration.  相似文献   

4.
Commercial bioreactors employing mammalian cell cultures to express biological or pharmaceutical products can become contaminated with adventitious viruses. The high expense of such a contamination can be reduced by passing all gases and fluids feeding the bioreactor through virus inactivation or removal steps, which act as viral barriers around the bioreactor. A novel virus barrier filter has been developed for removing viruses from serum-free cell culture media. This filter removes the 20 nm minute virus of mice by >3 log reduction value (LRV), the 28 nm bacteriophage PhiX174 by >4.5 LRV, the mycoplasma Acholeplasma laidlawii by > or =8.8 LRV, and the bacteria Brevundimonas diminuta by > or =9.2 LRV. Robust removal occurs primarily by size exclusion as demonstrated over a wide range of feedstocks and operating conditions. The filtered media are indistinguishable from unfiltered media in growth of cells to high densities, maintenance of cell viability, and productivity in expressing protein product. Insulin and transferrin show high passage through the filter. The virus barrier filter can be autoclaved. The relatively high membrane permeability enables the use of a moderate filtration area.  相似文献   

5.
The bacteriophage T4 containing assimilated radioactive phosphorus is inactivated at a rate proportional to the specific radioactivity of the constituent phosphorus. The beta radiation from the phosphorus makes a negligible contribution to this effect. The inactivation is therefore a direct consequence of the nuclear reaction, which kills the phage with an efficiency of about 1/12. Several phages related to T4 behave similarly. When radioactive phage is grown from a seed of non-radioactive phage, all of the phage progeny are subject to killing by radioactive decay. The phage is killed by beta radiation from P32 with an efficiency of about 1/100 per ionization within the particle volume. Bacteriophage T4 and its relatives contain about 500,000 atoms of phosphorus per infective particle. Virtually all this phosphorus is adsorbed to bacteria with the specificity characteristic of the infective particles, and none of it can be removed from the particles by the enzyme desoxyribonuclease. The phosphorus content per particle, together with the published data on analytical composition, indicates a particle diameter close to 110 mµ for the varieties of phage studied.  相似文献   

6.
We have studied bacteriophage λ head assembly under conditions in which the normal pathways for late phage DNA (concatemer) synthesis are blocked, and early (monomeric circular) DNA replication products accumulate. Our results show that under such conditions, the amount of late protein per amount of DNA is normal, but the amount of phage produced is not. Electron microscopic examination of thin sections of these bacteria shows that large numbers of “empty” head-shaped particles are produced. We conclude that the packaging of λ DNA depends on some structure (or property) possessed by DNA concatemers and absent in monomeric circular molecules and that the empty head-shaped particles which accumulate when concatemer production is blocked are head precursors which would normally accept concatemer DNA.These empty particles are the same size (approximately 550 Å vertex-to-vertex diameter) as the electron-dense, DNA-filled particles observed in similar sections of wild-type infected bacteria. In lysates the empty particles are approximately the same size as they are within the bacteria. However, filled heads observed in thin sections (or in negatively stained preparations) of lysates are larger than they are within the bacteria. This observation is contrary to what was previously suspected, since there seems to be little or no change in the size of intracellular λ capsids as a direct consequence of DNA packaging. Instead, an increase in the size of completed phage heads seems to take place as a consequence of cell lysis.  相似文献   

7.
Ma YL  Yang BL  Zhao JL 《Bioresource technology》2006,97(16):2041-2046
Biological removal of high concentrations of H(2)S was studied using the immobilized Thiobacillus denitrificans with peat moss, wood chip, ceramic and granular activated carbon (GAC) separately. Experiments on the physical adsorption capacity of matrix, retention time and pressure drop were carried out; the ability of bioreactor to buffer shock loading and the removal efficiency with different packing materials were also investigated. Besides, the kinetics of single-stage biodesulfuration was analyzed. The results showed that GAC provided higher bacteria adsorption capacity, showed a more resistance to shock loading and allowed better operational control with respect to pressure drop than other inert carriers. When the retention time was changed from 30 to 100 s at an influent concentration of 100 mg/L of H(2)S, the removal efficiencies were above 98%; when the inlet concentration of H(2)S were changed from 110 to 120 mg/L, an average 96.8% removal efficiency was achieved during the long-term operation for GAC bioreactor. Next to GAC, wood chip was found to be a good packing material; however, peat moss and ceramic had limited effectiveness and their removal efficiencies were less of 90%. The kinetic analysis showed that the maximum removal rate and the half-saturation constant of the GAC bioreactor were 666.7 mg (H(2)S)/(L.d) and 20.8 mg/L, respectively.  相似文献   

8.
Effects of particle size, fish size and temperature on the filtration rate of silver carp were determined. When feeding at 20°C on zooplankton and spherical particles (yeast, micronic beads and pollen), 32-g silver carp filter particles larger than 70 urn at a maximum rate of 18.251 h−1. For particles smaller than 70 μm, filtration rates decrease with decreasing particle size until there is no measured filtration for particles smaller than 10 μm. Filtering rates ( FR ) for particles between 10 and 50 μm are described by the equation, FR =−20.8 + 21.7 × log particle diameter. Filtration rates rise as fish size, particle size and temperature increase. Filtration rates per unit biomass, however, fall as fish size increases: FR = 1.54 W0.713, where FR is the maximum filtration rate in 1 h 1 fish 1 and W is weight of fish in grammes. The results of these trials are consistent with the hypothesis that particle selection by silver carp is a mechanical, passive function of gill raker morphology.  相似文献   

9.
This study involves partial characterisation of a lytic bacteriophage P.E1 against a multi drug-resistant clinical isolate of Escherichia coli, isolated from hospital sewage supply. The phage P.E1 has showed a narrow host range suitable for its use in phage therapy. Phage showed lytic activity up to 70°C and at alkaline conditions, but at higher acidic conditions its activity decreased. Latent period and burst size of P.E1 estimated from single-step growth curve was 40 min and 185 plaque-forming units per cell, respectively. The phage P.E1 reduced the growth of host bacteria during the initial 12?h of infection; however, the host bacteria developed resistance afterwards. During the 24-hour observation period, the bacteriophage could still reduce the growth of its host bacteria evident by lower optical density in the phage-treated samples compared with control. The phage genome was double-stranded DNA and larger than 12?kb in size. Further manipulations of genome and proteins may help to unveil the unique aspects of this phage, to use it in phage therapy against E. coli.  相似文献   

10.
A method is developed to obtain the electrophoretic mobility distribution of colloidal particles by microelectrophoresis. The results demonstrate that for small particles (< 1 microm), the experimental mobility distribution must be deconvoluted to remove the effect of the random Brownian motion so that the electrophoretic mobility distribution can be obtained. For bacteria-sized particles (on the order of 1 microm or larger), the random Brownian motion is not significant, and the experimental mobility distribution represents the electrophoretic mobility distribution. The significance of the electrophoretic mobility distribution to bacterial transport is demonstrated through comparison between experimental and theoretical values of collision efficiency. Using the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the electrophoretic mobility distribution of bacteria is transformed to the distribution of collision efficiencies. For strain Comamonas sp. DA001, the predicted collision efficiency values span orders of magnitude, indicating that variation of surface charge density in a monoclonal bacterial population is a cause for the orders of magnitude variation of experimentally determined collision efficiencies. However, despite the fact that the predicted and experimental alpha distributions overlap, the match is not adequate. This inadequacy is ascribed to inability to probe heterogeneity of bacterial surface hydrophobicity, and the inability of the DLVO theory to quantitatively model particle deposition.  相似文献   

11.
AIMS: To evaluate differences in biofilm or planktonic bacteria susceptibility to be killed by the polyvalent antistaphylococcus bacteriophage K. METHODS AND RESULTS: In this study, the ability of phage K to infect and kill several clinical isolates of Staphylococcus epidermidis was tested. Strains were grown in suspension or as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Most strains (10/11) were susceptible to phage K, and phage K was also effective in reducing biofilm biomass after 24 h of challenging. Biofilm cells were killed at a lower rate than the log-phase planktonic bacteria but at similar rate as stationary phase planktonic bacteria. CONCLUSIONS: Staphylococcus epidermidis biofilms and stationary growth phase planktonic bacteria are more resistant to phage K lysis than the exponential phase planktonic bacteria. SIGNIFICANCE OF STUDY: This study shows the differences in Staph. epidermidis susceptibility to be killed by bacteriophage K, when grown in biofilm or planktonic phenotypes.  相似文献   

12.
For obligately lytic bacteriophage (phage) a trade-off exists between fecundity (burst size) and latent period (a component of generation time). This trade-off occurs because release of phage progeny from infected bacteria coincides with destruction of the machinery necessary to produce more phage progeny. Here we employ phage mutants to explore issues of phage latent-period evolution as a function of the density of phage-susceptible bacteria. Theory suggests that higher bacterial densities should select for shorter phage latent periods. Consistently, we have found that higher host densities (≥~107 bacteria/ml) can enrich stocks of phage RB69 for variants that display shorter latent periods than the wild type. One such variant, dubbed sta5, displays a latent period that is ~70 to 80% of that of the wild type—which is nearly as short as the RB69 eclipse period—and which has a corresponding burst size that is ~30% of that of the wild type. We show that at higher host densities (≥~107 bacteria/ml) the sta5 phage can outcompete the RB69 wild type, though only under conditions of direct (same-culture) competition. We interpret this advantage as corresponding to slightly faster sta5 population growth, resulting in multifold increases in mutant frequency during same-culture growth. The sta5 advantage is lost, however, given indirect (different-culture) competition between the wild type and mutant or given same-culture competition but at lower densities of phage-susceptible bacteria (≤~106 bacteria/ml). From these observations we suggest that phage displaying very short latent periods may be viewed as specialists for propagation when bacteria within cultures are highly prevalent and transmission between cultures is easily accomplished.  相似文献   

13.
A recent development in prolonging the circulation time of drug carriers, such as liposomes and microspheres, has been to minimize their removal by macrophages of the reticuloendothelial system by covering their surface with hydrophilic polymers such as poloxamers, poloxamines and poly(ethyleneglycols). Here we demonstrate that this strategy may not necessarily prolong the circulatory half-life of drug carriers in all animal models. In rats, as opposed to rabbits, a non-phagocytic mechanism in the spleen may be triggered to remove efficiently from the blood drug carriers coated with hydrophilic coatings. Both the size of particle and its hydrophilic coating may act synergistically to trigger this non-phagocytic mechanism. In rats, a remarkable log to log relationship between particle size and spleen uptake was observed for both uncoated and polymeric coated microspheres. The potential implication of these observations in site-specific delivery of drug carriers is discussed.  相似文献   

14.
Infection of Escherichia coli by the filamentous bacteriophage f1 is initiated by interaction of the end of the phage particle containing the gene III protein with the tip of the F conjugative pilus. This is followed by the translocation of the phage DNA into the cytoplasm and the insertion of the major phage capsid protein, pVIII, into the cytoplasmic membrane. DNA transfer requires the chromosomally encoded TolA, TolQ, and TolR cytoplasmic membrane proteins. By using radiolabeled phages, it can be shown that no pVIII is inserted into the cytoplasmic membrane when the bacteria contain null mutations in tolQ, -R and -A. The rate of infection can be varied by using bacteria expressing various mutant TolA proteins. Analysis of the infection process in these strains demonstrates a direct correlation between the rate of infection and the incorporation of infecting bacteriophage pVIII into the cytoplasmic membrane.  相似文献   

15.
Sampling Submicron T1 Bacteriophage Aerosols   总被引:7,自引:5,他引:2       下载免费PDF全文
Liquid impingers, filter papers, and fritted bubblers were partial viable collectors of radioactive submicron T1 bacteriophage aerosols at 30, 55, and 85% relative humidity. Sampler differences for viable collection were due to incomplete physical collection (slippage) and killing of phage by the samplers. Dynamic aerosols of a mass median diameter of 0.2 mu were produced with a Dautrebande generator from concentrated aqueous purified phage suspensions containing extracellular soluble radioactive phosphate as a physical tracer. There was considerable destruction of phage by the Dautrebande generator; phage titers of the Dautrebande suspension decreased exponentially, but there was a progressive (linear) increase in tracer titers. Liquid impingers recovered the most viable phage but allowed considerable (30 to 48%) slippage, which varies inversely with the aerosol relative humidity. Filter papers were virtually complete physical collectors of submicron particles but were the most destructive. Fritted bubbler slippage was more than 80%. With all samplers, phage kill was highest at 85% relative humidity and lowest at 55% relative humidity. An electrostatic precipitator was used to collect aerosol samples for particle sizing with an electron microscope. The particle size was slightly larger at 85% relative humidity than at 30 or 55% relative humidity.  相似文献   

16.
When bacteriophage are added to laboratory bacteria populations, bacteria mutants that are resistant to the phage quickly dominate the population. The phage will only persist in the long‐term if there are sufficient bacteria in the population that show susceptibility to the phage. We investigated the mechanisms allowing for coexistence by adding the virulent bacteriophage φ6 to cultures of the bacterium Pseudomonas syringae pv. phaseolicola in a spatially homogeneous environment. We saw large differences between replicate cultures, in particular when one or both of the species persisted. These differences can be explained by variation in the timing of the appearance of various resistant phenotypes in the bacteria populations before the phage were added, which determines their relative frequencies within the populations. Although these resistant phenotypes have similar fitnesses in the presence and in the absence of the phage, they have a profound effect on the persistence of the phage. Our results give a clearer understanding of the ecological mechanisms that lead to the coexistence of bacteria and virulent phage in environments where there are no spatial refuges available to the bacteria population.  相似文献   

17.
鲍曼不动杆菌烈性噬菌体的分离与纯化   总被引:1,自引:0,他引:1  
梁莉  杨洪江  金鑫 《生物学杂志》2010,27(4):88-90,93
利用柱层析方法,纯化鲍曼不动杆菌(Acinetobacter baumannii)烈性噬菌体AB1。首先采用聚乙二醇6000沉淀方法,初步分离裂解液中的噬菌体,噬菌体纯度由6.1×1010 pfu/mg提高到37×1010 pfu/mg,噬菌体回收率为58.8%,蛋白质去除率为90.6%;噬菌体粗提样品经Sepharose 4B凝胶过滤层析柱进一步纯化,纯度提高到73×1010 pfu/mg,噬菌体回收率为95.7%,蛋白质去除率为48.1%;收集的噬菌体样品最后经DEAE-52阴离子交换层析柱处理,噬菌体纯度为40×1010 pfu/mg,回收率为50.8%,蛋白去除率15.6%。内毒素分析结果显示,Sepharose 4B凝胶过滤层析纯化的噬菌体样品中,内毒素含量为443.8 EU/mg,而DEAE-52阴离子交换层析纯化的噬菌体样品中,内毒素含量为544.4 EU/mg。实验结果显示,PEG沉淀方法与Sepharose 4B凝胶过滤方法能够有效地提高噬菌体纯度,而DEAE-52阴离子交换层析则不能提高噬菌体的纯度,也无法有效地去除样品中的内毒素。  相似文献   

18.
The removal of the abnormal form of prion protein i.e. PrPSC by filtration steps in the plasma fractionation process has been investigated by immuno-Western blotting. Depth filtration has been shown to be capable of removing scrapie by 2–3 log from certain plasma product intermediates. These include cryoprecipitate supernatant, used for the manufacture of immunoglobulin and albumin, and albumin fraction V, by filtration using Pall Seitz or 3m Cuno depth filters respectively. However no significant removal occurred with immunoglobulin Fraction II after Cuno depth filtration. When 0.2 μm PVDF and Nylon membrane filters were tested, the removal of TSEs from 20% albumin was limited i.e. 0.6–1.3 log. However under protein free conditions using phosphate buffered saline, filtration was not effective in the case of a PVDF filter but very effective i.e. >2.9 log in the case of a Nylon filter.  相似文献   

19.
Aim:  Identification of the predominating cultivable bacteria in granular activated carbon (GAC) filters used in a variety of water treatment plants for selecting representative strains to study the role of bacteria in the removal of dissolved organic matter.
Methods and Results:  Bacterial isolates were collected from 21 GAC filters in nine water treatment plants treating either ground water or surface water with or without oxidative pretreatment. Enrichment of samples in dilute liquid medium improved culturability of the bacteria by approximately log unit, to 9% up to 70% of the total cell counts. Genomic fingerprinting and 16S rDNA sequence analysis revealed that most (68%) of the isolates belonged to the Betaproteobacteria and 25% were identified as Alphaproteobacteria . The number of different genera within the Betaproteobacteria was higher in the GAC filters treating ozonated water than in the filters treating nonozonated water. Polaromonas was observed in nearly all of the GAC filters (86%), and the genera Hydrogenophaga , Sphingomonas and Afipia were observed in 43%, 33% and 29% of the filter beds, respectively. AFLP analysis revealed that the predominating genus Polaromonas included a total of 23 different genotypes.
Conclusions:  This study is the first to demonstrate that Polaromonas , which has mainly been observed in ultraoligotrophic freshwater environments, is a common component of the microbial community in GAC filters used in water treatment.
Significance and Impact of the Study:  The predominance of ultraoligotrophic bacteria in the GAC filters indicates that very low concentrations of substrates are available for microbial growth. Polaromonas species are suited for further studies on the nutritional versatility and growth kinetics enabling the modelling of biodegradation processes in GAC filters.  相似文献   

20.
Virus filtration can provide a robust method for removal of adventitious parvoviruses in the production of biotherapeutics. Although virus filtration is typically thought to function by a purely size‐based removal mechanism, there is limited data in the literature indicating that virus retention is a function of solution conditions. The objective of this work was to examine the effect of solution pH and ionic strength on virus retention by the Viresolve® NFP membrane. Data were obtained using the bacteriophage ?X174 as a model virus, with retention data complemented by the use of confocal microscopy to directly visualize capture of fluorescently labeled ?X174 within the filter. Virus retention was greatest at low pH and low ionic strength, conditions under which there was an attractive electrostatic interaction between the negatively charged membrane and the positively charged phage. In addition, the transient increase in virus transmission seen in response to a pressure disruption at pH 7.8 and 10 was completely absent at pH 4.9, suggesting that the trapped virus are unable to overcome the electrostatic attraction and diffuse out of the pores when the pressure is released. Further confirmation of this physical picture was provided by confocal microscopy. Images obtained at pH 10 showed the migration of previously captured phage; this phenomenon was absent at pH 4.9. These results provide important new insights into the factors governing virus retention using virus filtration membranes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1280–1286, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号