首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have explored the composition and stability properties of individual microtubules (MTs) in the axons of cultured sympathetic neurons. Using morphometric means to quantify the MT mass remaining in axons after various times in 2 micrograms/ml nocodazole, we observed that approximately 48% of the MT mass in the axon is labile, depolymerizing with a t1/2 of approximately 5 min, whereas the remaining 52% of the MT mass is stable, depolymerizing with a t1/2 of approximately 240 min. Immunofluorescence analyses show that the labile MTs in the axon are rich in tyrosinated alpha-tubulin, whereas the stable MTs contain little or no tyrosinated alpha-tubulin and are instead rich in posttranslationally detyrosinated and acetylated alpha-tubulin. These results were confirmed quantitatively by immunoelectron microscopic analyses of the distribution of tyrosinated alpha-tubulin among axonal MTs. Individual MT profiles were typically either uniformly labeled for tyrosinated alpha-tubulin all along their length, or were completely unlabeled. Roughly 48% of the MT mass was tyrosinated, approximately 52% was detyrosinated, and approximately 85% of the tyrosinated MTs were depleted within 15 min of nocodazole treatment. Thus, the proportion of MT profiles that were either tyrosinated or detyrosinated corresponded precisely with the proportion of MTs that were either labile or stable respectively. We also observed MT profiles that were densely labeled for tyrosinated alpha-tubulin at one end but completely unlabeled at the other end. In all of these latter cases, the tyrosinated, and therefore labile domain, was situated at the plus end of the MT, whereas the detyrosinated, and therefore stable domain was situated at the minus end of the MT, and in each case there was an abrupt transition between the two domains. Based on the frequency with which these latter MT profiles were observed, we estimate that minimally 40% of the MTs in the axon are composite, consisting of a stable detyrosinated domain in direct continuity with a labile tyrosinated domain. The extreme drug sensitivity of the labile domains suggests that they are very dynamic, turning over rapidly within the axon. The direct continuity between the labile and stable domains indicates that labile MTs assemble directly from stable MTs. We propose that stable MTs act as MT nucleating structures that spatially regulate MT dynamics in the axon.  相似文献   

2.
We have indirectly analyzed the role of tau in generating the highly organized microtubule (MT) array of the axon. Axons contain MT arrays of uniform polarity orientation, plus ends distal to the cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-673). Surprisingly, these MTs do not radiate from a single discrete nucleating structure in the cell body (Sharp, G. A., K. Weber, and M. Osborn. 1982. Eur. J. Cell Biol. 29: 97-103), but rather stop and start at multiple sites along the length of the axon (Bray, D., and M. B. Bunge. 1981. J. Neurocytol. 10:589-605). When Sf9 ovarian cells are induced to express high levels of tau protein, they develop cellular processes which are similar in appearance to axons and which contain dense arrays of MTs (Knops, J., K. S. Kosik, G. Lee, J. D. Pardee, L. Cohen-Gould, and L. McConlogue. 1991. J. Cell Biol. 114:725-734). We have analyzed the organization of MTs within these arrays, and determined it to be similar, but not identical, to the organization of MTs within the axon. The caliber, MT number, and MT density vary significantly from process to process, but on average are manyfold higher in the tau-induced processes than typically found in axons. Greater than 89% of the MTs in the processes are oriented with their plus ends distal to the cell body, and this proportion is even higher in the processes that are most similar to axons with regard to caliber, MT number, and MT density. Similar to the situation in the axon, MTs are discontinuous along the length of the tau-induced processes, and do not emanate from any observable nucleating structure in the cell body. We have also identified bundles of MTs throughout the cell bodies of the Sf9 cells induced to express tau. Similar to the MT arrays in the processes, these MT bundles are not visibly associated with any other cytological structures that might regulate their polarity orientation. Nevertheless, these bundles consist of MTs most (greater than 82%) of which have the same polarity orientation. Collectively, these results suggest that tau may play a fundamental role in generating MT organization in the axon. In particular, a key property of tau may be to bundle MTs preferentially with the same polarity orientation.  相似文献   

3.
We have investigated the sites of microtubule (MT) assembly in neurons during axon growth by taking advantage of the relationship between the proportion of tyrosinated alpha-tubulin (tyr-tubulin) in MTs and their age. Specifically, young (newly assembled) MTs contain more tyr-tubulin than older (more long-lived) MTs. To quantify the relative proportion of tyr-tubulin in MTs, cultured rat sympathetic neurons were permeabilized under conditions that stabilize existing MTs and remove unassembled tubulin. The MTs were then double-stained with antibodies to tyr-tubulin (as a measure of the amount of tyr-tubulin in MTs) and to beta-tubulin (as a measure of total MT mass), using immunofluorescence procedures. Cells were imaged with a cooled charge-coupled device camera and the relative proportion of tyr-tubulin in the MTs was quantified by computing the ratio of the tyr-tubulin fluorescence to the beta-tubulin fluorescence using a novel application of digital image processing and analysis techniques. The amount of tyr-tubulin in the MTs was highest in the cell body and at the growth cone; peak ratios in these two regions were approximately 10-fold higher than for the axon shaft. Moving out from the cell body into the axon, the tyr-tubulin content declined over an average distance of 40 microns to reach a constant low value within the axon shaft and then rose again more distally, over an average distance of 110 microns, to reach a peak at the growth cone (average axon length = 358 microns). These observations indicate that newly assembled MTs are concentrated in the proximal and distal regions of growing axons and therefore that the cell body and growth cone are the most active sites of MT assembly dynamics in neurons that are actively extending axons.  相似文献   

4.
《The Journal of cell biology》1993,120(6):1427-1437
It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine- axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that highly efficient mechanisms exist in the neuron to transport preassembled MTs from the cell body into the axon. These mechanisms are active even at the expense of the cell body, and even under conditions that promote some MT disassembly in the neuron. MT polarity analyses indicate that the MTs within the vinblastine-axons, like those in control axons, are uniformly plus-end-distal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Axons and dendrites contain dense microtubule (MT) assays that are not attached to a traditional MT nucleating structure such as the centrosome. Nevertheless, the MTs within these neurites are highly organized with respect to their polarity, and consist of a regular 13-protofilament lattice, the two known characteristics of MTs nucleated at the centrosome. These observations suggest either that axonal and dendritic MTs arise at the centrosome, or that they are nucleated locally, following a redistribution of MT nucleating material from the centrosome during neuronal development. To begin distinguishing between these possibilities, we have determined the distribution of gamma-tubulin within cultured sympathetic neurons. gamma-tubulin, a newly discovered protein which is specifically localized to the pericentriolar region of nonneuronal cells (Zheng, Y., M. K. Jung, and B. R. Oakley. 1991. Cell. 65:817-823; Stearns, T., L. Evans, and M. Kirschner. 1991. Cell. 65:825-836), has been shown to play a critical role in MT nucleation in vivo (Joshi, H. C., M. J. Palacios, L. McNamara, and D. W. Cleveland. 1992. Nature (Lond.). 356:80-83). Because the gamma-tubulin content of individual cells is extremely low, we relied principally on the high degree of resolution and sensitivity afforded by immunoelectron microscopy. Our studies reveal that, like the situation in nonneuronal cells, gamma-tubulin is restricted to the pericentriolar region of the neuron. Furthermore, serial reconstruction analyses indicate that the minus ends of MTs in both axons and dendrites are free of gamma-tubulin immunoreactivity. The absence of gamma-tubulin from the axon was confirmed by immunoblot analyses of pure axonal fractions obtained from explant cultures. The observation that gamma-tubulin is restricted to the pericentriolar region of the neuron provides compelling support for the notion that MTs destined for axons and dendrites are nucleated at the centrosome, and subsequently released for translocation into these neurites.  相似文献   

6.
Biochemical studies indicate that axonal tubulin is composed of at least two distinct pools that differ in cold solubility and biochemical composition [Brady et al: J. Cell Biol. 99:1716-1724]. To determine the morphologic correlate of cold-insoluble tubulin, segments of rat optic nerves were exposed to a series of in vitro experimental conditions that affect microtubules (MTs), including cold, podophyllotoxin (PT), triflupromazine (TFP), and taxol, and then examined by electron microscopy. Longitudinal sections of control axons showed MTs oriented parallel to the long axis of the axons. Axons exposed to cold, PT, and TFP showed short segments of MTs in association with cytoskeletal disarray. Morphometric studies were used to distinguish between a simple malorientation of MTs (undulation or zigzags in their course) and the loss of labile segments of MTs, leaving the stable portions behind. The lengths of MT segments were measured in longitudinal sections, and the numbers of MTs were determined in the cross sections. All MT segment-length histograms showed a unimodal distribution. Cold and PT produced a simple shift of the control histogram to the shorter length MTs. In cross sections the numbers of MTs in cold- and PT-exposed axons were significantly decreased, indicating that the presence of short segments of MTs in the longitudinal plane of sections was due to a loss of portions of MTs. Taxol, an agent that promotes MT assembly, reversed the cold effect partially and resulted in increases in both MT segment length and number. These studies indicate that stable MT segments are portions of longer MTs containing both stable and labile regions. Furthermore, these findings are consistent with the hypothesis that cold-insoluble tubulin functions as a transportable MT-organizing complex in the axon.  相似文献   

7.
We have proposed that stable microtubule (MT) fragments that resist depolymerization may serve as nucleating elements for the local control of MT dynamics in the axon (Heidemann, S. R., M. A. Hamborg, S. J. Thomas, B. Song, S. Lindley, and D. Chu, 1984, J. Cell Biol., 99:1289-1295). Here we report evidence that supports this proposal in studies on the role of MTs in the regrowth of neurites from the distal segments of amputated chick sensory neurites. Amputated neurites collapse to "beads" of axoplasm that rapidly regrow (Shaw, G., and D. Bray, 1977, Exp. Cell Res., 104:55-62). We examined both unarrested regrowth and regrowth after MT disassembly by either cold (-5 degrees C for 2 h) or nocodazole (0.1 microgram/ml for 15-20 min). In all these cases regrowth occurred at 3.5-4.5 micron/min with no delay times other than the times to reach 37 degrees C or rinse out the nocodazole. Electron micrographs of untreated beads show many MTs of varying lengths, while those of cold- and nocodazole-treated beads show markedly shorter MTs. The robust regrowth of neurites from beads containing only very short MTs argues against unfurling of intact MTs from the bead into the growing neurite. Electron micrographs of cold-treated beads lysed under conditions that cause substantial MT depolymerization in untreated intact neurites show persistent MT fragments similar to those in unlysed cold-treated beads. We interpret this as evidence that the MT fragments in cold-treated beads are somehow distinct from the majority of the MT mass that had depolymerized. Collapsed neurites treated with a higher dose of nocodazole (1.0 microgram/ml for 15-20 min) were completely devoid of MTs and regrew only after a 15-20 min delay in two cases but never regrew in 11 other cases. We found that MTs did not return in beads treated with 1.0 microgram/ml nocodazole even 30 min after removal of the drug. It was unlikely that the inability of these beads to reassemble MTs was due to incomplete removal of nocodazole in that a much higher dose (20 micrograms/ml nocodazole) could be quickly rinsed from intact neurites. Beads treated with 1.0 microgram/ml nocodazole could, however, be stimulated to reassemble MTs and regrow neurites by treatment with taxol. We conclude that the immediate, robust regrowth of neurites from collapsed beads of axoplasm requires MT nucleation sites to support MT reassembly.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Three monoclonal alpha-tubulin antibodies YL 1/2 (Kilmartin et al., 1982), 6-11B-1 (Piperno and Fuller, 1985) and DM1A (Blose et al., 1984) were used in indirect immunofluorescence (IIF) microscopy of the microtubule (MT) cytoskeleton in tobacco (Nicotiana tabacum) pollen tubes. The majority of pollen tube MTs contain tyrosinated alpha-tubulin recognized by YL 1/2. Acetylated alpha-tubulin revealed by 6-11B-1 was detected in the generative cell and in the kinetochore fibers, in polar spindle regions, and in the cell plate of the phragmoplast during generative cell division. In addition, small fragments of acetylated microtubules were seen in the older parts of the pollen tube grown on a taxol medium. The interaction of pollen tube MTs with mAb 6-11B-1 suggested that acetylation of alpha-tubulin correlates well with the putative arrays of stable MTs.  相似文献   

9.
The immature processes that give rise to both axons and dendrites contain microtubules (MTs) that are uniformly oriented with their plus- ends distal to the cell body, and this pattern is preserved in the developing axon. In contrast, developing dendrites gradually acquire nonuniform MT polarity orientation due to the addition of a subpopulation of oppositely oriented MTs (Baas, P. W., M. M. Black, and G. A. Banker. 1989. J. Cell Biol. 109:3085-3094). In theory, these minus-end-distal MTs could be locally nucleated and assembled within the dendrite itself, or could be transported into the dendrite after their nucleation within the cell body. To distinguish between these possibilities, we exposed cultured hippocampal neurons to nanomolar levels of vinblastine after one of the immature processes had developed into the axon but before the others had become dendrites. At these levels, vinblastine acts as a kinetic stabilizer of MTs, inhibiting further assembly while not substantially depolymerizing existing MTs. This treatment did not abolish dendritic differentiation, which occurred in timely fashion over the next two to three days. The resulting dendrites were flatter and shorter than controls, but were identifiable by their ultrastructure, chemical composition, and thickened tapering morphology. The growth of these dendrites was accompanied by a diminution of MTs from the cell body, indicating a net transfer of MTs from one compartment into the other. During this time, minus-end-distal microtubules arose in the experimental dendrites, indicating that new MT assembly is not required for the acquisition of nonuniform MT polarity orientation in the dendrite. Minus-end-distal microtubules predominated in the more proximal region of experimental dendrites, indicating that most of the MTs at this stage of development are transported into the dendrite with their minus-ends leading. These observations indicate that transport of MTs from the cell body is an essential feature of dendritic development, and that this transport establishes the nonuniform polarity orientation of MTs in the dendrite.  相似文献   

10.
The distribution of microtubules (MTs) enriched in detyrosinated alpha-tubulin (Glu-tubulin) was studied in Drosophila embryos by immunofluorescence microscopy by using a monoclonal antibody (ID5) which was raised against a 14-residue synthetic peptide spanning the carboxyterminal sequence of Glu-tubulin (Wehland and Weber: J. Cell Sci. 88:185-203, 1987). While all MT arrays contained tyrosinated alpha-tubulin (Tyr-tubulin), MTs rich in Glu-tubulin were not found during early stages of development even by using an image intensification camera. Elevated levels of microtubular Glu-tubulin were first detected after CNS condensation in neurone processes. In addition, sperm tails, which remained remarkably stable inside the embryo until late stages of development, were decorated by ID5. This was in marked contrast to the distribution of microtubule arrays containing acetylated alpha-tubulin, which could already be detected during the cellular blastoderm stage. Additional experiments with taxol suggested that the absence of MTs rich in Glu-tubulin during early stages of development was not due to the rapid turnover rate of MTs, which would be too fast for alpha-tubulin to be detyrosinated. The possible significance of the differential detyrosination and acetylation of microtubules during development is discussed.  相似文献   

11.
Stabilization of overlapping microtubules by fission yeast CLASP   总被引:3,自引:0,他引:3  
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.  相似文献   

12.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

13.
During the course of preimplantation development, the cells of the mouse embryo undergo both a major subcellular reorganization (at the time of compaction) and, subsequently, a process of differentiation as the phenotypes of trophectoderm and inner cell mass cell types diverge. We have used antibodies specific for tyrosinated (Kilmartin, J. V., B. Wright, and C. Milstein. 1982. J. Cell Biol. 93:576-582) and acetylated (Piperno, G., and M. T. Fuller. 1985. J. Cell Biol. 101:2085-2094) alpha-tubulin in immunofluorescence studies and found that subsets of microtubules can be distinguished within and between cells during the course of these events. Whereas all microtubules contained tyrosinated alpha-tubulin, acetylated alpha-tubulin was detected only in a subpopulation, located predominantly in the cell cortices. Striking differences developed between the distribution of the two populations during the course of development. Firstly, whereas the microtubule population as a whole tends to redistribute towards the apical domain of cells as they polarize during compaction (Houliston, E., S. J. Pickering, and B. Maro. 1987. J. Cell Biol. 104:1299-1308), the microtubules recognized by the antiacetylated alpha-tubulin antibody became enriched in the basal part of the cell cortex. After asymmetric division of polarized cells to generate two distinct cell types (termed inside and outside cells) we found that, despite the relative abundance of microtubules in outside cells, acetylated microtubules accumulated preferentially in inside cells. Treatment with nocodazole demonstrated that within each cell type acetylated microtubules were the more stable ones; however, the difference in composition of the microtubule network between cell types was not accompanied by a greater stability of the microtubule network in inside cells.  相似文献   

14.
Posttranslationally modified forms of tubulin accumulate in the subset of stabilized microtubules (MTs) in cells but are not themselves involved in generating MT stability. We showed previously that stabilized, detyrosinated (Glu) MTs function to localize vimentin intermediate filaments (IFs) in fibroblasts. To determine whether tubulin detyrosination or MT stability is the critical element in the preferential association of IFs with Glu MTs, we microinjected nonpolymerizable Glu tubulin into cells. If detyrosination is critical, then soluble Glu tubulin should be a competitive inhibitor of the IF-MT interaction. Before microinjection, Glu tubulin was rendered nonpolymerizable and nontyrosinatable by treatment with iodoacetamide (IAA). Microinjected IAA-Glu tubulin disrupted the interaction of IFs with MTs, as assayed by the collapse of IFs to a perinuclear location, and had no detectable effect on the array of Glu or tyrosinated MTs in cells. Conversely, neither IAA-tyrosinated tubulin nor untreated Glu tubulin, which assembled into MTs, caused collapse of IFs when microinjected. The epitope on Glu tubulin responsible for interfering with the Glu MT-IF interaction was mapped by microinjecting tubulin fragments of alpha-tubulin. The 14-kDa C-terminal fragment of Glu tubulin (alpha-C Glu) induced IF collapse, whereas the 36-kDa N-terminal fragment of alpha-tubulin did not alter the IF array. The epitope required more than the detyrosination site at the C terminus, because a short peptide (a 7-mer) mimicking the C terminus of Glu tubulin did not disrupt the IF distribution. We previously showed that kinesin may mediate the interaction of Glu MTs and IFs. In this study we found that kinesin binding to MTs in vitro was inhibited by the same reagents (i.e., IAA-Glu tubulin and alpha-C Glu) that disrupted the IF-Glu MT interaction in vivo. These results demonstrate for the first time that tubulin detyrosination functions as a signal for the recruitment of IFs to MTs via a mechanism that is likely to involve kinesin.  相似文献   

15.
Several groups have shown that PC12 will extend microtubule-containing neurites on extracellular matrix (ECM) with no lag period in the absence of nerve growth factor. This is in contrast to nerve growth factor (NGF)-induced neurite outgrowth that occurs with a lag period of several days. During this lag period, increased synthesis or activation of assembly-promoting microtubule-associated proteins (MAPs) occurs and is apparently required for neurite extension. We investigated the growth and microtubule (MT) content of PC12 neurites grown on ECM in the presence or absence of inhibitors of neurite outgrowth. On ECM, neurites of cells with or without prior exposure to NGF contain a normal density of MTs, but frequently contain unusual loops of MTs in their termini that may indicate increased MT assembly. On ECM, neurites extend from PC12 cells in the presence of 10 microM LiCl at significantly higher frequency than on polylysine. On other substrates, LiCl inhibits neurite outgrowth, apparently by inhibiting phosphorylation of particular MAPs (Burstein, D. E., P. J. Seeley, and L. A. Greene. 1985. J. Cell Biol. 101:862-870). Although 35-45% of 60 Li(+)-neurites examined were found to contain a normal array of MTs, 25-30% were found to have a MT density approximately 15% of normal. The remaining 30% of these neurites were found to be nearly devoid of MTs, containing only occasional, ambiguous, short tubular elements. We also found that neurites would extend on ECM in the presence of the microtubule depolymerizing drug, nocodazole. At 0.1 micrograms/ml nocodazole, cells on ECM produce neurites that contain a normal density of MTs. This is in contrast to the lack of neurite outgrowth and retraction of extant neurites that this dose produces in cells grown on polylysine. At 0.2 microgram/ml nocodazole, neurites again grew out in substantial number and four of five neurites examined ultrastructurally were found to be completely devoid of microtubules. We interpret these results by postulating that growth on ECM relieves the need for MTs to serve as compressive supports for neurite tension (Dennerll, T. J., H. C. Joshi, U. L. Steel, R. E. Buxbaum, and S. R. Heidemann. 1988. J. Cell Biol. 107:665). Because compression destabilizes MTs and favors disassembly, this would tend to increase MT assembly relative to other conditions, as we found. Additionally, if MTs are not needed as compressive supports, neurites could grow out in their absence, as we also observed.  相似文献   

16.
We recently developed a direct fluorescence ratio assay (Zhai, Y., and G.G. Borisy. 1994. J. Cell Sci. 107:881-890) to quantify microtubule (MT) polymer in order to determine if net MT depolymerization occurred upon anaphase onset as the spindle was disassembled. Our results showed no net decrease in polymer, indicating that the disassembly of kinetochore MTs was balanced by assembly of midbody and astral MTs. Thus, the mitosis-interphase transition occurs by a redistribution of tubulin among different classes of MTs at essentially constant polymer level. We now examine the reverse process, the interphase-mitosis transition. Specifically, we quantitated both the level of MT polymer and the dynamics of MTs during the G2/M transition using the fluorescence ratio assay and a fluorescence photoactivation approach, respectively. Prophase cells before nuclear envelope breakdown (NEB) had high levels of MT polymer (62%) similar to that previously reported for random interphase populations (68%). However, prophase cells just after NEB had significantly reduced levels (23%) which recovered as MT attachments to chromosomes were made (prometaphase, 47%; metaphase, 56%). The abrupt reorganization of MTs at NEB was corroborated by anti- tubulin immunofluorescence staining using a variety of fixation protocols. Sensitivity to nocodazole also increased at NEB. Photoactivation analyses of MT dynamics showed a similar abrupt change at NEB, basal rates of MT turnover (pre-NEB) increased post-NEB and then became slower later in mitosis. Our results indicate that the interphase-mitosis (G2/M) transition of the MT array does not occur by a simple redistribution of tubulin at constant polymer level as the mitosis-interphase (M/G1) transition. Rather, an abrupt decrease in MT polymer level and increase in MT dynamics occurs tightly correlated with NEB. A subsequent increase in MT polymer level and decrease in MT dynamics occurs correlated with chromosome attachment. These results carry implications for understanding spindle morphogenesis. They indicate that changes in MT dynamics may cause the steady-state MT polymer level in mitotic cells to be lower than in interphase. We propose that tension exerted on the kMTs may lead to their lengthening and thereby lead to an increase in the MT polymer level as chromosomes attach to the spindle.  相似文献   

17.
Microtubule nucleation and release from the neuronal centrosome   总被引:12,自引:7,他引:5       下载免费PDF全文
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron.  相似文献   

18.
Microtubule transport and assembly during axon growth   总被引:2,自引:1,他引:1  
There is controversy concerning the mechanisms by which the axonal microtubule (MT) array is elaborated, with some models focusing on MT assembly and other models focusing on MT transport. We have proposed a composite model in which MT assembly and transport are both important (Joshi, H.C., and P.W. Baas. 1993. J. Cell Biol. 121:1191-1196). In the present study, we have taken a novel approach to evaluate the merits of this proposal. Biotinylated tubulin was microinjected into cultured neurons that had already grown short axons. The axons were then permitted to grow longer, after which the cells were prepared for immunoelectron microscopic analyses. We reasoned that any polymer that assembled or turned over subunits after the introduction of the probe should label for biotin, while any polymer that was already assembled but did not turnover should not label. Therefore, the presence in the newly grown region of the axon of any unlabeled MT polymer is indicative of MT transport. In sampled regions, the majority of the polymer was labeled, indicating that MT assembly events are active during axon growth. Varying amounts of unlabeled polymer were also present in the newly grown regions, indicating that MT transport also occurs. Together these findings demonstrate that MT assembly and transport both contribute to the elaboration of the axonal MT array.  相似文献   

19.
Adenomatous polyposis coli (APC) tumor suppressor protein has been shown to be localized near the distal ends of microtubules (MTs) at the edges of migrating cells. We expressed green fluorescent protein (GFP)-fusion proteins with full-length and deletion mutants of Xenopus APC in Xenopus epithelial cells, and observed their dynamic behavior in live cells. During cell spreading and wound healing, GFP-tagged full-length APC was concentrated as granules at the tip regions of cellular extensions. At higher magnification, APC appeared to move along MTs and concentrate as granules at the growing plus ends. When MTs began to shorten, the APC granules dropped off from the MT ends. Immunoelectron microscopy revealed that fuzzy structures surrounding MTs were the ultrastructural counterparts for these GFP signals. The COOH-terminal region of APC was targeted to the growing MT ends without forming granular aggregates, and abruptly disappeared when MTs began to shorten. The APC lacking the COOH-terminal region formed granular aggregates that moved along MTs toward their plus ends in an ATP-dependent manner. These findings indicated that APC is a unique MT-associated protein that moves along selected MTs and concentrates at their growing plus ends through their multiple functional domains.  相似文献   

20.
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally “pioneering” MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 μm/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione–2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that ~80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号