首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies have shown that an endogenous lipoperoxidation product, 9-hydroxystearic acid (9-HSA), acts in colon carcinoma cells (HT29) as a growth inhibitor by inducing p21(WAF1) in an immediate-early, p53-independent manner and that p21(WAF1) is required for 9-HSA-mediated growth arrest in HT29 cells. It is conceivable, therefore, to hypothesize that the cytostatic effect induced by this agent is at least partially associated with a molecular mechanism that involves histone deacetylase 1 (HDAC1) inhibition, as demonstrated for sodium butyrate and other specific inhibitors, such as trichostatin A and hydroxamic acids. Here, we show that, after administration, 9-HSA causes an accumulation of hyperacetylated histones and strongly inhibits the activity of HDAC1. The interaction of 9-HSA with the catalytic site of the enzyme has been highlighted by computational modeling of the human HDAC1, using its homolog from the hyperthermophilic Aquifex aeolicus as a template. Consistent with the experimental data, we find that 9-HSA can bind to the active site of the protein, showing that the inhibition of the enzyme can be explained at the molecular level by the ligand-protein interaction.  相似文献   

2.
3.
Previous studies have shown that hyperoxia inhibits proliferation and increases the expression of the tumor suppressor p53 and its downstream target, the cyclin-dependent kinase inhibitor p21(CIP1/WAF1), which inhibits proliferation in the G1 phase of the cell cycle. To determine whether growth arrest was mediated through activation of the p21-dependent G1 checkpoint, the kinetics of cell cycle movement during exposure to 95% O2 were assessed in the Mv1Lu and A549 pulmonary adenocarcinoma cell lines. Cell counts, 5-bromo-2'-deoxyuridine incorporation, and cell cycle analyses revealed that growth arrest of both cell lines occurred in S phase, with A549 cells also showing evidence of a G1 arrest. Hyperoxia increased p21 in A549 but not in Mv1Lu cells, consistent with the activation of the p21-dependent G1 checkpoint. The ability of p21 to exert the G1 arrest was confirmed by showing that hyperoxia inhibited proliferation of HCT 116 colon carcinoma cells predominantly in G1, whereas an isogenic line lacking p21 arrested in S phase. The cell cycle arrest in S phase appears to be a p21-independent process caused by a gradual reduction in the rate of DNA strand elongation. Our data reveal that hyperoxia inhibits proliferation in G1 and S phase and demonstrate that p53 and p21 retain their ability to affect G1 checkpoint control during exposure to elevated O2 levels.  相似文献   

4.
Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53. This study found that MRPL41 mediates the p21(WAF1/CIP1)-mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21(WAF1/CIP1) and p27(Kip1) levels under the growth inhibitory conditions.  相似文献   

5.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   

6.
Our previous studies indicated that dietary conjugated linoleic acid (CLA) inhibits colon tumor cell proliferation in vitro and in vivo. To identify mechanisms by which CLA regulates growth arrest, the HT-29 human colon carcinoma cell line was treated with various physiological concentrations of CLA and analyzed by flow cytometry. We detected a dose-dependent increase in the percentage of cells arrested in G1 after CLA treatment that was accompanied by induction of the cyclin dependent kinase (CDK) inhibitor p21CIP1/WAF. CLA addition also led to increased p21 expression in HCT116 and SW480 cells, indicating that p21 induction is a general consequence of CLA treatment in colon cancer cells. Since both HT-29 and SW480 cells have mutant p53, our data indicate that p53 is not essential for induction of p21. In addition to an increase in p21 levels, HT-29 cell growth arrest was also accompanied by moderate decreases in Cyclin A, D1, E, and proliferating cell nuclear antigen (PCNA) levels. Following CLA treatment, p21 associated with and inhibited CDK4 and CDK2, and this correlated with reduced phosphorylation of retinoblastoma proteins. Increased association of p21 with PCNA was also detected. Dietary CLA inhibits cell cycle progression by inducing p21, which negatively regulates the growth promoting activities of CDK/cyclins and PCNA. These studies indicate that physiological concentrations of CLA inhibit growth of colon cancer cells with either wild-type or mutant p53, and may have therapeutic benefits in vivo.  相似文献   

7.
8.
9.
10.
11.
Phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and all-trans-retinoic acid (trans-RA) are potent regulators of growth of cancer cells. In this study, we investigated the effect of TPA and trans-RA alone or their combination on proliferation of human breast cancer ZR75-1 and T47D and lung cancer H460 and H292 cell lines. trans-RA caused various degrees of growth inhibition of these cell lines. However, TPA showed inhibition of proliferation of H460 and H292 cells and induction of ZR75-1 cell growth. Although trans-RA did not significantly regulate the growth inhibitory effect of TPA, it completely prevented its growth stimulating function. The divergent effects of TPA were associated with specific disruption of cell cycle events, an induction of G(0)/G(1) arrest in H460 and H292 cells and inhibition of G(0)/G(1) arrest with increase of S phase in ZR75-1 cells. Induction of G(0)/G(1) arrest was accompanied by induction of p21(WAF1) and ERK activity, whereas inhibition of G(0)/G(1) arrest was associated with enhanced activity of JNK and AP-1 but not ERK. trans-RA did not affect TPA-induced p21(WAF1) expression. However, it inhibited TPA-induced AP-1 activity in ZR75-1 cells and the constitutive AP-1 activity in H460 and H292 cells. Thus, trans-RA modulates TPA activity through its interaction through TPA-induced JNK/AP-1 pathway but not TPA-induced ERK/p21(WAF1) pathway.  相似文献   

12.
13.
Wen CJ  Xue B  Qin WX  Yu M  Zhang MY  Zhao DH  Gao X  Gu JR  Li CJ 《FEBS letters》2004,564(1-2):171-176
hNRAGE, a neurotrophin receptor p75 interacting MAGE homologue, is cloned from a human placenta cDNA library. hNRAGE can inhibit the colony formation of and arrest cell proliferation at the G1/S and G2/M stages in hNRAGE overexpressing cells. Interestingly, hNRAGE also increases the p53 protein level as well as its phosphorylation (Ser392). Further studies demonstrated that hNRAGE does not affect the proliferation of mouse p53-/- embryonic fibroblasts, suggesting that p53 function is required for hNRAGE induced cell cycle arrest. Moreover, the cell cycle inhibiting protein p21(WAF) is induced by hNRAGE in a p53 dependent manner. The data provide original evidence that hNRAGE arrests cell growth through a p53 dependent pathway.  相似文献   

14.
Sonic hedgehog opposes epithelial cell cycle arrest.   总被引:14,自引:0,他引:14       下载免费PDF全文
Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation and also resist exhaustion of replicative growth capacity. In addition, Shh blocks p21(CIP1/WAF1)-induced growth arrest. These data indicate that Shh promotes neoplasia by opposing normal stimuli for epithelial cell cycle arrest.  相似文献   

15.
Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells.  相似文献   

16.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

17.
18.
19.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

20.
The molecular and biochemical mode of cell death of dopaminergic neurons in Parkinson's disease (PD) is uncertain. In an attempt at further clarification we studied the effects of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on dopaminergic PC12 cells. In humans and nonhuman primates MPTP/MPP+ causes a syndrome closely resembling PD. MPP+ toxicity is thought to be mediated by the block of complex I of the mitochondrial electron transport chain. Treatment of undifferentiated PC12 cells with MPP+ primarily inhibited proliferation of PC12 cells and secondarily led to cell death after the depletion of all energy substrates by glycolysis. This cell death showed no morphological characteristics of apoptosis and was not blocked by treatment with caspase inhibitors. The inhibition of cell growth was not dependent on an inhibition of complex I activity since MPP+ also inhibited cell proliferation in SH-SY5Y cells lacking mitochondrial DNA and complex I activity (p0 cells). As shown by flow cytometric analysis, MPP+ induced a block in the G0/G1 to S phase transition that correlated with increased expression of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) and growth arrest. Since treatment with 1 microM MPP+ caused apoptotic cell death in p21(WAF1/Cip1)-deficient (p21(-/-)) but not in parental (p21(+/+)) mouse embryo fibroblasts, our data suggest that in an early phase MPP+-induced p21(WAF1/Cip1) expression leads to growth arrest and prevents apoptosis until energy depletion finally leads to a nonapoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号