首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of membrane-inserted protein kinase C   总被引:7,自引:0,他引:7  
M D Bazzi  G L Nelsestuen 《Biochemistry》1988,27(20):7589-7593
Protein kinase C (PKC) interacted with phospholipid vesicles in a calcium-dependent manner and produced two forms of membrane-associated PKC: a reversibly bound form and a membrane-inserted form. The two forms of PKC were isolated and compared with respect to enzyme stability, cofactor requirements, and phorbol ester binding ability. Membrane-inserted PKC was stable for several weeks in the presence of calcium chelators and could be rechromatographed on gel filtration columns in the presence of EGTA without dissociation of the enzyme from the membrane. The activity of membrane-inserted PKC was not significantly influenced by Ca2+, phospholipids, and/or PDBu. Partial dissociation of this PKC from phospholipid was achieved with Triton X-100, followed by dialysis to remove the detergent. The resulting free PKC appeared indistinguishable from original free PKC with respect to its cofactor requirements for activation (Ca2+, phospholipid, and phorbol esters), molecular weight, and phorbol 12,13-dibutyrate (PDBu) binding. The binding of PDBu to free and membrane-inserted PKC was measured under equilibrium conditions using gel filtration techniques. At 2.0 nM PDBu, free PKC bound PDBu with nearly 1:1 stoichiometry in the presence of Ca2+ and phospholipid. No PDBu binding to the free enzyme was observed in the absence of Ca2+. In contrast, membrane-inserted PKC bound PDBu in the presence or the absence of Ca2+; calcium did enhance the affinity of this interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Protein kinase C interaction with calcium: a phospholipid-dependent process   总被引:6,自引:0,他引:6  
M D Bazzi  G L Nelsestuen 《Biochemistry》1990,29(33):7624-7630
The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.  相似文献   

3.
Protein kinase C is reported to exist in two membrane-bound states: a reversible one which can be dissociated by calcium chelators (membrane-associated form) and an irreversible one which is chelator stable (membrane-inserted form).In the present work the effects of a naturally occurring polyamine (spermine) on the membrane-associated and membrane-inserted forms of protein kinase C were investigated using a reconstituted system consisting of partially purified protein kinase C from rat brain and phospholipid vesicles of defined composition. The active membrane-bound complex was conveniently determined by its ability to bind radioactive phorbol ester with an exact 1:1 stoichiometry.Our experimental data show that, in the absence of calcium ions, the amount of enzyme bound to phospholipids vesicles was dramatically reduced by the presence of spermine whereas the PDBu binding affinity was not significantly affected. The addition of the divalent cation increased the affinity of phorbol ester for the active complex but had no effect on Nmax; spermine added in this experimental conditions was no longer able to decrease the total number of enzyme molecules bound to liposomes.Moreover gel filtration experiments of the protein kinase C-phospholipids complex formed in the presence of calcium, indicated that polyamine added during the association process was able to reduce the extent of enzyme insertion into liposomes. Since the increase in phospholipid concentration resulted in a higher level of non-dissociable protein kinase C-liposomes complex we propose that spermine, complexing to membrane binding sites both in the absence and in the presence of Ca++, could promote binding conditions that oppose to the formation of the inserted form of the enzyme. As a consequence the distribution between the reversible and the irreversible membrane-bound forms of protein kinase C is affected.  相似文献   

4.
Interactions of types I, II, and III protein kinase C (PKC) with phospholipids were investigated by following the changes in protein kinase activity and phorbol ester binding. The acidic phospholipids such as phosphatidylserine (PS), phosphatidic acid, phosphatidyl-glycerol, and cardiolipin, which are activators of PKC in the assay of protein phosphorylation, could differentially inactivate PKC I, II, and III during preincubation in the absence of divalent cation. The phospholipid-induced inactivation of PKC was concentration and time dependent and only affected the kinase activity without influencing phorbol ester binding. PKC I was the most susceptible to the phospholipid-induced inactivation, and PKC III was the least. The IC50 values of PS for PKC I, II, and III were 5, 45, and greater than 120 microM, respectively. Addition of divalent cation such as Ca2+ or Mg2+ suppressed the phospholipid-induced inactivation of PKC. In the absence of divalent cation, PKC I, II, and III all formed complexes with PS vesicles, although to a slightly different degree, as analyzed by molecule sieve chromatography. [3H]Phorbol 12,13-dibutyrate binding for PKC I, II, and III was recovered after chromatography; however, the kinase activities of all these enzymes were greatly reduced. In the presence of Ca2+, all three PKCs formed complexes with PS vesicles, and both the kinase and phorbol ester-binding activities of PKC II and III were recovered following chromatography. Under the same conditions, the phorbol ester-binding activity of PKC I was also recovered, but the kinase activity was not. The phospholipid-induced inactivation of PKC apparently results from a direct interaction of phospholipid with the catalytic domain of PKC; this interaction can be suppressed by divalent cations. In the presence of divalent cations, PS interacted preferentially with the regulatory domain of PKC and resulted in the activation of the kinase.  相似文献   

5.
Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can also activate PKC in the presence of phosphatidylserine (PS) and Ca2+ with a KPIP2 of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP2 and DG on PKC. Here, we investigate the effect of PIP2 on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP2 inhibited specific binding of [3H]phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP2 than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP2 is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (Kd') against PIP2 concentration was linear over a range of 0.01-1 mol % with a Ki of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP2. Competition between PIP2 and phorbol ester could be demonstrated in a liposomal assay system also. These results indicate that PIP2, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP2 is a primary activator of the enzyme.  相似文献   

6.
Incubation of protein kinase C (PKC) alpha with phorbol 12,13-dibutyrate and phospholipid vesicles promoted a time-dependent irreversible insertion of the enzyme into the vesicles and the generation of a calcium-independent kinase activity. Calcium neither caused insertion nor influenced the insertion induced by the phorbol ester. The effect was strongly dependent on the phosphatidylserine concentration in the vesicle and could also be supported by other anionic phospholipids. An analysis of the structure-activity relations of PKC activators for the calcium-independent kinase activity revealed marked relative differences in potencies for binding and for insertion. Compounds such as phorbol 13-myristate 12-acetate and mezerein were very efficient at inducing insertion. In contrast, 12-deoxyphorbol esters and diacylglycerol were relatively inefficient at inducing insertion, requiring higher concentrations than expected from their binding affinities. The insertion of PKC alpha depended substantially on the length of the aliphatic esters in the 12- and 13-positions of the phorbol derivatives, and once again, potencies for insertion and binding were not directly proportional. Our findings suggest two different sites for ligand interaction on the molecule of PKC alpha with different structure-activity requirements. We speculate that the differential ability of compounds to promote insertion could contribute to the documented marked differences in the biological behavior of PKC activators.  相似文献   

7.
The C1 domains of conventional and novel protein kinase C (PKC) isoforms bind diacylglycerol and phorbol esters with high affinity. Highly conserved hydrophobic residues at or near the rim of the binding cleft in the second cysteine-rich domain of PKC-delta (PKC-deltaC1b) were mutated to probe their roles in ligand recognition and lipid interaction. [(3)H]Phorbol 12,13-dibutyrate (PDBu) binding was carried out both in the presence and absence of phospholipids to determine the contribution of lipid association to the ligand affinity. Lipid dependence was determined as a function of lipid concentration and composition. The binding properties of a high affinity branched diacylglycerol with lipophilicity similar to PDBu were compared with those of PDBu to identify residues important for ligand selectivity. As expected, Leu-20 and Leu-24 strongly influenced binding. Substitution of either by aspartic acid abolished binding in either the presence or absence of phosphatidylserine. Mutation of Leu-20 to Arg or of Leu-24 to Lys caused a dramatic (340- and 250-fold, respectively) reduction in PDBu binding in the presence of lipid but only a modest reduction in the weaker binding of PDBu observed in the absence of lipid, suggesting that the main effect was on C1 domain -phospholipid interactions. Mutation of Leu-20 to Lys or of Trp-22 to Lys had modest (3-fold) effects and mutation of Phe-13 to Tyr or Lys was without effect. Binding of the branched diacylglycerol was less dependent on phospholipid and was more sensitive to mutation of Trp-22 to Tyr or Lys, especially in the presence of phospholipid, than was PDBu. In terms of specific PKC isoforms, our results suggest that the presence of Arg-20 in PKC-zeta may contribute to its lack of phorbol ester binding activity. More generally, the results emphasize the interplay between the C1 domain, ligand, and phospholipid in the ternary binding complex.  相似文献   

8.
The alpha isoform of phosphatidylinositol-specific phospholipase C (alpha-PI-PLC, Mr 62,000) was purified from bovine brain. Enzyme activity was dependent on calcium, sodium cholate and showed the anticipated specificity for the phosphatidylinositols. Calcium interaction with this protein, investigated by gel filtration chromatography, showed no detectable binding at calcium concentrations adequate to activate the enzyme. Association of alpha-PI-PLC with phospholipid vesicles was studied by light scattering, fluorescence energy transfer and gel-filtration chromatography. The enzyme readily associated with vesicles of high charge density, with vesicles of crude acidic phospholipids and with PIP2. Interaction was characterized by a rapid association followed by slower addition of more protein to the phospholipid. Complexes containing 20-30 percent protein (by weight) were readily obtained. Calcium had only a small effect on this interaction. The protein-phospholipid complexes appeared to bind less calcium than a similar amount of phospholipid alone. Thus, alpha-PI-PLC did not appear to be a calcium-binding protein in either its free or membrane-associated states. Although alpha-PI-PLC showed the highest propensity to bind to phospholipids, a number of other proteins also associated with phospholipids under the conditions used. Thus, whether or not the observed interaction of alpha-PI-PLC with membranes was specific and biologically important or whether it was a process common to many proteins, was not known. Knowledge of this interaction may enhance our understanding of possible mechanisms for protein-membrane interactions in general.  相似文献   

9.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

10.
Constitutive activity of membrane-inserted protein kinase C   总被引:6,自引:0,他引:6  
Incubation of purified protein kinase C (PKC) with phospholipid vesicles produced two populations of membrane-bound PKC: one population was dissociated by calcium chelation and the other was not. The second population appeared to be inserted into the membrane. The activity of membrane-inserted PKC was Ca2+-independent and was only modestly sensitive to phorbol esters. Insertion was caused by high calcium concentrations or by phorbol esters plus low calcium. These conditions correlated with those needed to activate PKC; insertion into the membrane may be a primary mechanism of PKC activation. PKC may be a long-term cell regulator which becomes inserted into the membrane upon appearance of the second messengers, calcium and diacylglycerol, and remains in an active membrane-bound state when the second messengers have been removed.  相似文献   

11.
At micromolar concentrations, zinc (Zn) and cadmium, but not other metals, greatly augmented binding of [3H]phorbol dibutyrate ([3H]PDBu) to protein kinase C (PKC) in cell homogenates and intact cells (in the presence of ionophore). Increased binding persisted for several hours. The heavy-metal chelating agent 1,10-phenanthroline completely reversed the increased [3H]PDBu binding in cells pretreated with 65Zn and ionophore and this was associated with a decline of about 20% in cell-associated 65Zn, suggesting that a relatively small pool of intracellular Zn acts on PKC. This may be a membrane-associated pool, since 65Zn readily bound to isolated erythrocyte inside-out membranes. Phenanthroline also partially inhibited binding of [3H]PDBu to PKC in untreated cells and extracts in a Zn-reversible manner. Therefore, cellular Zn appears to regulate the interaction of ligand with PKC. PKC bound to a Zn affinity column and was eluted by metal-chelator, confirming that Zn interacts directly with PKC.  相似文献   

12.
Interaction of protein kinase C (PKC) isozymes with phosphatidylinositol 4,5-bisphosphate (PIP2) was investigated by monitoring the changes in the intrinsic fluorescence of the enzyme, the kinase activity, and phorbol ester binding. Incubation of PKC I, II, and III with PIP2 resulted in different rates of quenching of PKC fluorescence and different degrees of inactivation of these enzymes. Other inositol-containing phospholipids such as phosphatidylinositol and phosphatidylinositol 4-phosphate also caused differential rates of quenching of the intrinsic fluorescence of these enzymes. These latter two phospholipids were, however, less potent in the inactivation of PKCs than PIP2. The IC50 of PIP2 were 2, 4, and 11 microM for PKC I, II, and III, respectively. Inactivation of PKCs by PIP2 cannot be reversed by extensive dilution of PIP2 with Nonidet P-40 nor by digestion of PIP2 with phospholipase C. Interaction of PIP2 with the various PKC isozymes was greatly facilitated in the presence of Mg2+ or Ca2+ as evidenced by the accelerated quenching of the PKC fluorescence, however, these divalent metal ions protected PKC from the PIP2-induced inactivation. Binding of PIP2 to PKC in the absence of divalent metal ion also caused a reduction of [3H]phorbol 12,13-dibutyrate binding as a result of reducing the affinity of the enzyme for phorbol ester. Based on gel filtration chromatography, it was estimated that one molecule of PKC interacted with one PIP2 micelle with an aggregation number of 80-90. The PIP2-bound PKC could further interact with phosphatidylserine in the presence of Ca2+ to form a larger complex. Binding of PKC to both PIP2 and phosphatidylserine in the presence of Ca2+ was also evident by changes in the intrinsic fluorescence of PKC. As the interaction of PKC with PIP2, but not with phosphatidylserine, could be enhanced by millimolar concentrations of Mg2+, we propose that PIP2 may be a component of the membrane anchor for PKC under basal physiological conditions when [Ca2+]i is low and Mg2+ is plentiful. Under the in vitro assay conditions, PIP2 could stimulate PKC activity to a level approximately 10-20% of that by diacylglycerol. The stimulatory effect of PIP2 on PKC apparently is not due to binding to the same site recognized by diacylglycerol or phorbol ester, because PIP2 cannot effectively compete with phorbol 12,13-dibutyrate in the binding assay.  相似文献   

13.
Protein kinase C contains two phorbol ester binding domains   总被引:10,自引:0,他引:10  
A series of deletion and truncation mutants of protein kinase C (PKC) were expressed in the baculovirus-insect cell expression system in order to elucidate the ability of various domains of the enzyme to bind phorbol dibutyrate (PDBu). A PKC truncation mutant consisting of only the catalytic domain of the enzyme did not bind [3H]PDBu, whereas a PKC truncation mutant consisting of the regulatory domain (containing the tandem cysteine-rich putative zinc finger regions) bound [3H]PDBu. Deletion of the second conserved region (C2) of PKC did not abolish [3H]PDBu binding, whereas a deletion of the first conserved region (C1) of PKC, containing the two cysteine-rich sequences, completely abolished [3H]PDBu binding. Additional truncation and deletion mutants helped to localize the region necessary for [3H]PDBu binding; all PKC mutants that contained either one of the cysteine-rich zinc finger-like regions possessed phorbol ester binding activity. Scatchard analyses of these mutants indicated that each bound [3H]PDBu with equivalent affinity (21-41 nM); approximately 10-20-fold less than the native enzyme. In addition, a peptide of 146 amino acid residues from the first cysteine-rich region, as well as a peptide of only 86 amino acids residues from the second cysteine-rich region, both bound [3H]PDBu with high affinity (31 +/- 4 and 59 +/- 13 nM, respectively). These data establish that PKC contains two phorbol ester binding domains which may function in its regulation.  相似文献   

14.
Five rabbit cDNAs, encoding four conventional protein kinase Cs (PKCs), alpha, beta I, beta II, and gamma, and a novel PKC-related protein (nPKC epsilon) were transfected into COS cells. Antisera raised against a bacterially synthesized fragment of PKC alpha or nPKC epsilon and against a chemically synthesized peptide of PKC beta I or beta II, specifically identified the corresponding species in the transfected cells. All four PKCs and nPKC epsilon expressed by transfection served as phorbol ester receptors. Phorbol 12,13-dibutyrate (PDBu)-binding activities of all PKCs and nPKC epsilon required phospholipid but not magnesium. The phosphatidylserine requirement for the activity of nPKC epsilon is independent of Ca2+ and similar to that for PKC alpha observed at 0.03 mM Ca2+. Calcium dependence of the binding activity was observed only for the four conventional PKCs. Scatchard plot analysis clearly showed that the dissociation constants of PDBu for all four PKCs were nearly the same (approximately 25 nM) in the presence of Ca2+, and that the value for nPKC epsilon was slightly higher (84 nM) and independent of Ca2+. The latter value is comparable to those observed in several cell types under conditions of Ca2+ chelation. Translocation of conventional PKC alpha to the membranes was induced with phorbol ester in a Ca2+-dependent manner, whereas the PDBu-stimulated translocation of nPKC epsilon did not require Ca2+. These results, together with previous studies on the enzymological characteristics of nPKC epsilon (Ohno, S., Akita, Y., Konno, Y., Imajoh, S., and Suzuki, K. (1988) Cell 53, 731-741), suggest that nPKC epsilon plays an important role in a transmembrane signaling pathway distinct from that involving conventional PKCs.  相似文献   

15.
Phorbol esters have been reported to induce opposite responses in fetal myoblasts and in satellite cells isolated from adult skeletal muscles. We examined the possibility that different levels of protein kinase C (PKC) activity and different phorbol ester binding characteristics account for these responses. For this purpose, the subcellular distributions of PKC were compared in primary cultures of myogenic cells from fetal and adult rat muscles and in the L6 cell line. Cells were used at the proliferative stage or after differentiation into myotubes. Binding of phorbol dibutyrate (PDBu) was assayed. In all three cell types, the levels of PKC specific activity were comparable at the proliferating and the differentiated stages, and partial translocation of PKC activity from the membrane to the cytosolic compartment was observed after differentiation into myotubes. PDBu binding, which had a Kd of 6 to 13 nM in proliferative cells, rose to between 30 and 52 nM in myotubes. Simultaneously, a small increase was observed in the total number of PDBu binding sites. These results suggest that the role of PKC might change with the stage of differentiation. They also imply that the difference described by others between the sensitivity to phorbol esters of fetal myoblasts and satellite cells is not connected with the phorbol ester receptor (i.e., PKC), but might be caused by events subsequent to PKC activation.  相似文献   

16.
The zeta isoform of protein kinase C (PKC zeta) was purified to near homogeneity from the cytosolic fraction of bovine kidney by successive chromatography on DEAE-Sephacel, heparin-Sepharose, phenyl-5PW, hydroxyapatite, and Mono Q. The purified enzyme had a molecular mass of 78 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was recognized by an antibody raised against a synthetic oligopeptide corresponding to the deduced amino acid sequence of rat PKC zeta. The enzymatic properties of PKC zeta were examined and compared with conventional protein kinase C purified from rat brain. The activity of PKC zeta was stimulated by phospholipid but was unaffected by phorbol ester, diacylglycerol, or Ca2+. PKC zeta did not bind phorbol ester, and autophosphorylation was not affected by phorbol ester. Unsaturated fatty acid activated PKC zeta, but this activation was neither additive nor synergistic with phospholipid. These results indicate that regulation of PKC zeta is distinct from that of other isoforms and suggest that hormone-stimulated increases in diacylglycerol and Ca2+ do not activate this isoform in cells. It is possible that PKC zeta belongs to another enzyme family, in which regulation is by a different mechanism from that for other isoforms of protein kinase C.  相似文献   

17.
The effect of tumor-promoting phorbol ester treatment on the binding of interleukin-1 beta (IL-1 beta) to specific cell surface receptors was investigated. A 1 h exposure of Raji human B lymphoma cells with the protein kinase C-activating phorbol ester, phorbol dibutyrate (PDBu), reduced IL-1 beta binding by up to 90% of control cells. This effect was dose-dependent and was not observed with 4-alpha-phorbol, an inactive tumor promoter. Analysis of 125I-labeled IL-1 beta binding to intact cells revealed that PDBu caused a 91% decrease in high-affinity cell-surface receptor number without an effect on receptor affinity. The phorbol ester response was rapid (30 min), observed both at 4 and 37 degrees C, and was preceded by the rapid translocation (t much less than 6 min) of protein kinase C (PKC) from the cytosol to the cell membrane. The PDBu-induced decrease in IL-1 beta receptor number was inhibited by prior incubation of cells for 30 min with the PKC inhibitor 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine (H7). The decrease in receptor binding was not due to enhanced IL-1 beta receptor internalization or shedding into the extracellular medium, since a similar effect was observed with solubilized IL-1 beta receptor. The most likely explanation for the phorbol ester effect appears to be cell surface inactivation of IL-1 receptors. These data suggest that modulation of PKC activity could play a role in the regulation of the IL-1 beta receptor.  相似文献   

18.
The tumour promoter, phorbol ester 12,13-dibutyrate (PDBu), acts on rectal palisadic epithelial cells and mimics the effects of neuroparsin, an antidiuretic neuronal hormone isolated from nervous lobes of the African locust corpora cardiaca. PDBu stimulated Ca2+-dependent phospholipase C (PLC) activity resulting in inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) production, increased cytosolic free calcium (monitored with the probe indo-1) and rectal fluid resorption. A 15-min pre-treatment with polymyxin B (PMXB), a protein kinase C (PKC) inhibitor acting at the phosphatidylserine (PS) binding site, suppressed PDBu stimulatory effects on free calcium entry and fluid resorption but not on phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) breakdown. On the contrary, bisindolylmaleimide Ro 32-0432 (which inhibits PKC at its ATP binding site) abolished entirely PDBu-stimulated PLC activity. It was concluded that two PKC are involved in transduction of the antidiuretic signal of neuroparsin. One PKC is PMXB sensitive and stimulates biological response after cytosolic free Ca2+ increase, while another PKC, insensitive to the PKC inhibitor, regulates the processes induced by the former PKC. Since PMXB-insensitive PKC exerts a stimulatory effect on PtdIns-4,5-P2-PLC production, this original mechanism may be considered as a new signalling pathway under control of PKC.  相似文献   

19.
M D Bazzi  G L Nelsestuen 《Biochemistry》1991,30(32):7961-7969
Protein kinase C and two other proteins with molecular masses of 64 and 32 kDa, purified from bovine brain, constitute a type of protein that binds a large number of calcium ions in a phospholipid-dependent manner. This study suggested that these proteins also induced extensive clustering of acidic phospholipids in the membranes. Clustering of acidic phospholipids was detected by the self-quenching of a fluorescence probe that was attached to acidic phospholipids (phosphatidic acid or phosphatidylglycerol). Addition of these proteins to phospholipid vesicles containing 15% fluorescently labeled phosphatidic acid dispersed in neutral phosphatidylcholine resulted in extensive, rapid, and calcium-dependent quenching of the fluorescence signal. Fluorescence-quenching requirements coincided with protein-membrane binding characteristics. As expected, the addition of these proteins to phospholipid vesicles containing fluorescent phospholipids dispersed with large excess of acidic phospholipids produced only small fluorescence changes. In addition, association of these proteins with vesicles composed of 100% fluorescent phospholipids resulted in no fluorescence quenching. Protein binding to vesicles containing 5-50% fluorescent phospholipid showed different levels of fluorescence quenching that closely resemble the behavior expected for extensive segregation of the acidic phospholipids in the outer layer of the vesicles. Thus, the fluorescence quenching appeared to result from self-quenching of the fluorophores that become clustered upon protein-membrane binding. These results were consistent with protein-membrane binding that was maintained by calcium bridges between the proteins and acidic phospholipids in the membrane. Since each protein bound eight or more calcium ions in the presence of phospholipid, they may each induce clustering of a related number of acidic phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cells of epithelial origin generally require ethanolamine (Etn) to grow in defined culture medium. When such cells are grown without Etn, the membrane phospholipid composition changes drastically, becoming phosphatidylethanolamine (PE)-deficient due to a reduced de novo rate of PE synthesis, and growth stops. We have hypothesized that the cessation of growth occurs because this membrane phospholipid environment is no longer suitable for membrane-associated functions. Phospholipid has long been known to play a role in the transduction of some signals across membranes. In addition to the well-known phosphatidylinositol cycles, hydrolysis of phosphatidylcholine (PC) and PE has recently been shown to play a central role in signal transduction. Using an Etn-requiring rat mammary cell line 64-24, we have studied the metabolism of PC and PE in response to the phorbol ester phorbol 12,13-dibutyrate (PDBu) under conditions where cells have either normal or PE-deficient membrane phospholipid. In cells having normal membrane phospholipid, the synthesis of PC was stimulated by PDBu (approximately fourfold), as was the degradation of PC and PE (by twofold and fourfold, respectively). Product analysis suggested that PDBu stimulated hydrolysis of PC by both phospholipases C and D (PLC and PLD), and of PE by PLD. However, in PE-deficient cells, neither lipid synthesis or degradation were significantly stimulated by PDBu. Analysis of the CDP-choline pathway of PC synthesis indicated that the regulatory enzyme, CTP:phosphorylcholine cytidylyltransferase, was stimulated about twofold by PDBu in cells having normal membrane, but not in PE-deficient cells. These results indicate that the membrane phospholipid environment profoundly affects phospholipid metabolism, which no doubt influences cell growth and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号