首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbial populations responsible for anaerobic degradation of phthalate isomers were investigated by enrichment and isolation of those microbes from anaerobic sludge treating wastewater from the manufacturing of terephthalic acid. Primary enrichments were made with each of three phthalate isomers (ortho-, iso-, and terephthalate) as the sole energy source at 37 degrees C with two sources of anaerobic sludge (both had been used to treat wastewater containing high concentrations of phthalate isomers) as the inoculum. Six methanogenic enrichment cultures were obtained which not only degraded the isomer used for the enrichment but also had the potential to degrade part of other phthalate isomers as well as benzoate with concomitant production of methane, presumably involving strictly syntrophic substrate degradation. Our 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that the predominant bacteria in the enrichment cultures were affiliated with a recently recognized non-sulfate-reducing subcluster (subcluster Ih) in the group 'Desulfotomaculum lineage I' or a clone cluster (group TA) in the class delta-PROTEOBACTERIA: Several attempts were made to isolate these microbes, resulting in the isolation of a terephthalate-degrading bacterium, designated strain JT, in pure culture. A coculture of the strain with the hydrogenotrophic methanogen Methanospirillum hungatei converted terephthalate to acetate and methane within 3 months of incubation, whereas strain JT could not degrade terephthalate in pure culture. During the degradation of terephthalate, a small amount of benzoate was transiently accumulated as an intermediate, indicative of decarboxylation of terephthalate to benzoate as the initial step of the degradation. 16S rRNA gene sequence analysis revealed that the strain was a member of subcluster Ih of the group 'Desulfotomaculum lineage I', but it was only distantly related to other known species.  相似文献   

2.
The effect of propionate toxicity at different pH values (6.5, 7.0, and 8.0) on methanogen-enriched sludge. Methanobrevibacter smithii, and Methanospirillum hungatii was studied. Organisms were grown in Balch medium 3 in Hungate tubes, and toxicity was characterized by a decrease in production of methane and in bacterial numbers. Propionate inhibited bacterial growth and cumulative methane production at concentrations as low as 20 mM. In the absence of propionate, the methanogen-enriched sludge and M. smithii showed better cumulative methane production at pH 6.5 and 7.0 than at pH 8.0. However, in the presence of propionate, these organisms showed better cumulative methane production at pH 8.0. M. hungatii differed in its behavior; the best values of cumulative methane production for this organism occurred at pH 7.0. Bacterial numbers reflected the microbial response to the presence of propionate. The highest counts of methanogenic bacteria were observed at pH 6.5 and 8.0. The numbers of methanogens were affected by the presence of propionate even at concentrations as low as 20 or 30 mM; at propionate concentrations above 80 mM, the methanogen count was affected by at least 2 orders of magnitude. Upon comparison of the responses of the pure cultures and the methanogen-enriched sludge to increasing propionate concentrations, it was found that the sensitivity of the pure cultures was similar to that of the methanogens in the sludge.  相似文献   

3.
The effect of propionate toxicity at different pH values (6.5, 7.0, and 8.0) on methanogen-enriched sludge. Methanobrevibacter smithii, and Methanospirillum hungatii was studied. Organisms were grown in Balch medium 3 in Hungate tubes, and toxicity was characterized by a decrease in production of methane and in bacterial numbers. Propionate inhibited bacterial growth and cumulative methane production at concentrations as low as 20 mM. In the absence of propionate, the methanogen-enriched sludge and M. smithii showed better cumulative methane production at pH 6.5 and 7.0 than at pH 8.0. However, in the presence of propionate, these organisms showed better cumulative methane production at pH 8.0. M. hungatii differed in its behavior; the best values of cumulative methane production for this organism occurred at pH 7.0. Bacterial numbers reflected the microbial response to the presence of propionate. The highest counts of methanogenic bacteria were observed at pH 6.5 and 8.0. The numbers of methanogens were affected by the presence of propionate even at concentrations as low as 20 or 30 mM; at propionate concentrations above 80 mM, the methanogen count was affected by at least 2 orders of magnitude. Upon comparison of the responses of the pure cultures and the methanogen-enriched sludge to increasing propionate concentrations, it was found that the sensitivity of the pure cultures was similar to that of the methanogens in the sludge.  相似文献   

4.
Abstract Fermentative degradation of hydroquinone, catechol, and phenol was demonstrated with nearly-homogeneous mixed methanogenic cultures obtained from freshwater sediments and sewage sludge by enrichment with the respective phenolic substrates. Gram-negative short rods predominated in these cultures, together with hydrogen- and acetate-utilizing methanogens. Acetate and methane were the only degradation products. Bacteria enriched with hydroquinone or catechol also degraded phenol and p -hydroxy-benzoate, but not resorcinol or resorcylic acids. Phenol was formed as an intermediate during catechol and hydroquinone degradation, indicating that reductive dehydroxylation was the primary event in degradation of these substrates. Inhibition experiments with bromoethanesulfonate and acetylene indicated that catechol, hydroquinone, and phenol degradation depended on a syntrophic co-operation of fermenting bacteria and hydrogen-oxidizing methanogens.  相似文献   

5.
The ciliate Nyctotherus ovalis occurs in high numbers in the hindgut of the American cockroach (Periplaneta americana) and harbors methanogenic bacteria as endosymbionts. The contribution of these hindgut microorganisms to metabolic and developmental processes of P. americana was studied by comparing cultures of cockroaches in which the composition of the hindgut microbial population was altered in various ways. Rearing the insects protozoan free resulted in increased insect generation time, decreased adult body weight, and absence of methane production. After feeding of protozoan-free adult cockroaches with a hindgut suspension containing N. ovalis and methanogens, methane increased to normal values and insect body weight was restored during the development of the second generation of insects. Feeding the protozoan-free cockroaches a hindgut suspension which was made free of N. ovalis resulted in an increase in methane production to only about 20% of the normal methane production level. This suggests that the methanogenic endosymbionts of N. ovalis are the major source of methane production in the hindgut. Inhibition of methanogens by addition of bromoethanesulfonic acid to the drinking water of a normal cockroach culture resulted in a reduction of methane production to about 2% of the normal level. No effects on insect body weight or the number of N. ovalis organisms were observed, but the fermentation pattern in the hindgut was shifted towards a relative increase in propionate levels. Similar results were obtained for in vitro cultures of hindgut microorganisms treated with bromoethanesulfonic acid. The results suggest a major role for hindgut protozoa in cockroach metabolic activities, especially during the insect growth period. The relatively large amounts of methane produced by cockroaches and by other methane-producing xylophagous insects suggest a major contribution by insects to global methane production.  相似文献   

6.
Anaerobic biodegradability of phthalic acid isomers and related compounds   总被引:10,自引:0,他引:10  
All three phthalic acid isomers ( ortho, meta and para benzene dicarboxylic acid) are produced in massive amounts, and used in the chemical industry as plasticizers or for the production of polyester. Wastestreams generated during the production of phthalate isomers generally contain high concentrations of aromatic acids. To study the potential biodegradability of these primarily anthropogenic compounds in anaerobic bioreactors, biodegradability studies were performed. Compounds tested were benzoate, ortho-phthalate, isophthalate, terephthalate, dimethyl phthalate, dimethyl terephthalate, para-toluate and para-xylene. Seed materials tested were two types of granular sludge and digested sewage sludge. It was found that all phthalate isomers and their corresponding dimethyl-esters, could be completely mineralized by all seed materials studied. Lag phases required for 50% degradation of these compounds, ranged from 17 to 156 days. The observed degradation curves could be explained by growth of an initially small amount of organisms in the inoculum with the specific ability to degrade one phthalate isomer. The observed order in the length of the lag phases for the phthalate isomers is: phthalate < terephthalate < isophthalate. This order appears to be related to the environmental abundancy of the different phthalate isomers. The initial step in the degradation pathway of both dimethyl phthalate esters was hydrolysis of the ester sidechain, resulting in the formation of the corresponding mono-methyl-phthalate isomer and phthalate isomer. The rate limiting step in mineralization of both dimethyl phthalate and dimethyl terephthalate was found to be fermentation of the phthalate isomer. Para-toluate was degraded only by digested sewage sludge after a lag phase of 425 days. The observed degradation rates of this compound were very low. No mineralization of para-xylene was observed. In general, the differences in the lag phases between different seed materials were relatively small. These results indicate that the time needed for the start-up of anaerobic bioreactors treating wastewaters containing phthalic acid isomers, depends little on the microbial composition of the seed material applied, but may take several months.  相似文献   

7.
Isolation of Methanobrevibacter smithii from human feces.   总被引:11,自引:7,他引:4       下载免费PDF全文
Fecal specimens from nine adults were examined for the presence of methanogenic bacteria. Enrichment cultures of five specimens produced methane in 5 days. Of these five specimens, three were tested and produced methane during a short-term incubation. Four specimens did not produce methane in either short-term incubation or in enrichment culture. Each methanogenic culture contained methanogens similar in morphology to organisms of the genus Methanobrevibacter and showed factor-420 fluorescence by fluorescence microscopy. Pure cultures were obtained from four of the five methanogenic enrichment cultures. Each isolate grew and formed methane from either H2-CO2 or formate, but growth obtained with formate was poor. None of the isolates used acetate, methanol, or trimethylamine. All isolates grew in the presence of bile salts. In immunological studies, each isolate was closely related to the type strain of Methanobrevibacter smithii, a finding consistent with the physiological and morphological similarities between the isolates and the type strain.  相似文献   

8.
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes.  相似文献   

9.
Abstract Substrate competition between methanogenic and facultative bacteria under highly aerobic conditions was investigated in batch experiments. Natural mixed cultures of anaerobic bacteria immobilized in granular sludge were able to concurrently utilize oxygen and produce methane when supplied with ethanol as substrate. The most oxygen tolerant sludge converted 3 to 25% of substrate chemical oxygen demand to methane after 3 days while 23 to 2 mg 1−1 of dissolved oxygen were present in the media. The tolerance of methanogens to oxygen and their coexistence with facultative bacteria were evident even after long periods of oxygen exposure. Eventually, methane oxidizing bacteria developed in the co-culture. The consumption of oxygen by facultative bacteria, creating anaerobic microniches inside the granules, is hypothesized to protect the methanogens.  相似文献   

10.
It has been assumed that the feeding habits of vertebrates predispose the variety of intestinal differentiations and the composition of the microbial biota living in their intestinal tracts. Consequently, the presence of methanogenic bacteria in the various differentiations of the large intestine and the foregut of herbivorous vertebrates had been attributed primarily to the existence of anaerobic habitats and the availability of carbon dioxide and hydrogen originating from the fermentative microbial digestion of plant-based diets. However, Australian ratites, many murids, and several New World primates lack methanogens, despite their intestinal differentiations and their vegetarian feeding habits. Crocodiles, giant snakes, aardvarks, and ant-eaters on the other hand release significant amounts of methane. A determination of methane emissions by 253 vertebrate species confirmed that competence for intestinal methanogenic bacteria is shared by related species and higher taxa, irrespective of different feeding habits. In “methanogenic” branches of the evolutionary tree, a variety of differentiations of the large intestine evolved and, in some cases, differentiations of the foregut. In contrast, the lack of competence for methanogens in chiropterans/insectivores and carnivores apparently has precluded the evolution of specialized fermenting differentiations of the digestive tract. Our observations reveal that the presence of intestinal methanogenic bacteria is under phylogenetic rather than dietary control: competence for intestinal methanogenic bacteria is a plesiomorphic (primitive-shared) character among reptiles, birds, and mammals. This competence for methanogenic bacteria has been crucial for the evolution of the amniotes.  相似文献   

11.
Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.  相似文献   

12.
The biotransformation of carbon tetrachloride (CT) under various electron acceptor conditions was investigated using enrichment cultures developed from the anaerobic digester sludge of Thibodaux sewage treatment plant. The results indicated that CT was biotransformed under sulfate-reducing, methanogenic, nitrate-reducing, iron-reducing, fermenting, and mixed electron acceptor conditions. However, the rates of CT removal varied among the conditions studied. The fastest removal of CT (100% removal in 12 days) was observed under mixed electron acceptor conditions followed in order by sulfate-reducing, methanogenic, fermenting, iron-reducing, and nitrate-reducing conditions. Under mixed electron acceptor conditions, the CT was converted to methyl chlorides, which was further metabolized. Under sulfate, iron, nitrate-reducing, and methanogenic conditions, the major metabolite produced from CT metabolism was chloroform (CF). Under fermenting conditions, methylene chloride was produced from CT metabolism. This study showed evidence for CT metabolism in a mixed microbial population system similar to many contaminated field sites where a heterogeneous microbial population exists.  相似文献   

13.
Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of methanogens and on typical fatty acid‐degrading syntrophic methanogenic coculture was evaluated. CNT affected methane production by methanogenic cultures, although acceleration was higher for hydrogenotrophic methanogens than for acetoclastic methanogens or syntrophic coculture. Interestingly, the initial methane production rate (IMPR) by Methanobacterium formicicum cultures increased 17 times with 5 g·L?1 CNT. Butyrate conversion to methane by Syntrophomonas wolfei and Methanospirillum hungatei was enhanced (~1.5 times) in the presence of CNT (5 g·L?1), but indications of DIET were not obtained. Increasing CNT concentrations resulted in more negative redox potentials in the anaerobic microcosms. Remarkably, without a reducing agent but in the presence of CNT, the IMPR was higher than in incubations with reducing agent. No growth was observed without reducing agent and without CNT. This finding is important to re‐frame discussions and re‐interpret data on the role of conductive materials as mediators of DIET in anaerobic communities. It also opens new challenges to improve methane production in engineered methanogenic processes.  相似文献   

14.
In situ hybridization with fluorescent oligonucleotides was used to detect and localize microorganisms in the granules of two lab-scale upflow anaerobic sludge blanket reactors that had been fed for several months with either sucrose or a mixture of volatile fatty acids. Sections of the granules were hybridized with 16S rRNA-targeted oligonucleotide probes for Bacteria, Archaea, specific phylogenetic groups of methanogens, and two syntrophic propionate-oxidizing strains, MPOB and KOPROP1. Cells of the syntrophic strain KOPROP1 were not detected in either type of sludge granules. Hybridizations of the sucrose-fed granules showed an outer layer of mainly bacterial microcolonies with different morphologies. More inwards of these granules, a layer of different methanogenic microcolonies mixed with large colonies of the syntrophic strain MPOB could be detected. The MPOB colonies were intertwined with hydrogen- or formate-consuming methanogens, indicating their syntrophic growth. The granules fed with volatile fatty acids showed an outer layer of mainly bacteria and then a thick layer of Methanosaeta-like methanogens mixed with a few bacteria and a layer of methanogens mixed with syntrophic MPOB microcolonies. The centers of both sludge types consisted of large cavities and methanogenic microcolonies. These results indicate a juxtapositioning of syntrophic bacteria and methanogens and provide additional evidence for a layered microbial architecture of anaerobic granular sludge.  相似文献   

15.
A stabilized consortium of microbes which anaerobically degraded benzoate and produced CH4 was established by inoculation of a benzoate-mineral salts medium with sewage sludge; the consortium was routinely subcultured anaerobically in this medium for 3 years. Acetate, formate, H2 and CO2 were identified as intermediates in the overall conversion of benzoate to CH4 by the culture. Radioactivity was equally divided between the CH4 and CO2 from the degradation of uniformly ring-labeled [14C]benzoate. The methyl group of acetate was stoichiometrically converted to CH4. Acetate, cyclohexanecarboxylate, 2-hydroxycyclohexanecarboxylate, o-hydroxybenzoic acid and pimelic acid were converted to CH4 without a lag suggesting that benzoate was degraded by a reductive pathway. Addition of o-chlorobenzoate inhibited benzoate degradation but not acetate degradation or methane formation. Two methanogenic organisms were isolated from the mixed culture, neither organism was able to degrade benzoate, showing that the methanogenic bacteria served as terminal organisms of a metabolic food chain composed of several organisms. Removal of intermediates by the methanogenic bacteria provided thermodynamically favorable conditions for benzoate degradation.  相似文献   

16.
A dialysis cultivation system was used to enrich slow-growing moderately thermophilic anaerobic bacteria at high cell densities. Bicarbonate buffered mineral salts medium with 5 mM glutamate as the sole carbon and energy source was used and the incubation temperature was 55 degrees C. The reactor inoculum originated from anaerobic methanogenic granular sludge bed reactors. The microbial population was monitored over a period of 2 years using the most probable number (MPN) technique. In the reactor glutamate was readily degraded to ammonium, methane, and carbon dioxide. Cell numbers of glutamate-degrading organisms increased 400-fold over the first year. In medium supplemented with bromoethane sulfonic acid (BES, an inhibitor of methanogenesis), tenfold lower cell numbers were counted, indicating the syntrophic nature of glutamate degradation. After 2 years of reactor operation the predominant organisms were isolated and characterized. Methanobacterium thermoautotrophicum (strain R43) and a Methanosaeta thermophila strain (strain A) were the predominant hydrogenotrophic and acetoclastic methanogens, respectively. The numbers in which the organisms were present in the reactor after 24 months of incubation were 8.6 x 10(9) and 3.8 x 10(7) mL(-1) sludge, respectively. The most predominant glutamate-degrading organism (8.6 x 10(7) mL(-1) sludge), strain Z, was identified as a new species, Caloramator coolhaasii. It converted glutamate to hydrogen, acetate, some propionate, ammonium, and carbon dioxide. Growth of this syntrophic organism on glutamate was strongly enhanced by the presence of methanogens.  相似文献   

17.
The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

18.
Obtaining a reliable estimation of the methane potential of organic waste streams in anaerobic digestion, for which a biochemical methane potential (BMP) test is often used, is of high importance. Standardization of this BMP test is required to ensure inter-laboratory repeatability and accuracy of the BMP results. Therefore, guidelines were set out; yet, these do not provide sufficient information concerning origin of and the microbial community in the test inoculum. Here, the specific contribution of the methanogenic community on the BMP test results was evaluated. The biomethane potential of four different substrates (molasses, bio-refinery waste, liquid manure and high-rate activated sludge) was determined by means of four different inocula from full-scale anaerobic digestion plants. A significant effect of the selected inoculum on the BMP result was observed for two out of four substrates. This inoculum effect could be attributed to the abundance of methanogens and a potential inhibiting effect in the inoculum itself, demonstrating the importance of inoculum selection for BMP testing. We recommend the application of granular sludge as an inoculum, because of its higher methanogenic abundance and activity, and protection from bulk solutions, compared with other inocula.  相似文献   

19.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

20.
Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44 degrees 35' N, 125 degrees 10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 degrees C to 15 degrees C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号