首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fester T  Wray V  Nimtz M  Strack D 《Phytochemistry》2005,66(15):1781-1786
The identification and quantification of cyclohexenone glycoside derivatives from the model legume Lotus japonicus revealed far higher levels than expected according to the stoichiometric relation to another, already determined carotenoid cleavage product, i.e., mycorradicin. Mycorradicin is responsible for the yellow coloration of many arbuscular mycorrhizal (AM) roots and is usually esterified in a complex way to other compounds. After liberation from such complexes it has been detected in AM roots of many, but not of all plants examined. The non-stoichiometric occurrence of this compound compared with other carotenoid cleavage products suggested that carotenoid biosynthesis might be activated upon mycorrhization even in plant species without detectable levels of mycorradicin. This assumption has been supported by inhibition of a key enzyme of carotenoid biosynthesis (phytoene desaturase) and quantification of the accumulating enzymic substrate (phytoene). Our observations suggest that the activation of carotenoid biosynthesis in AM roots is a general phenomenon and that quantification of mycorradicin is not always a good indicator for this activation.  相似文献   

2.
Qin G  Gu H  Ma L  Peng Y  Deng XW  Chen Z  Qu LJ 《Cell research》2007,17(5):471-482
Carotenoids play an important role in many physiological processes in plants and the phytoene desaturase gene (PDS3) encodes one of the important enzymes in the carotenoid biosynthesis pathway. Here we report the identification and analysis of a T-DNA insertion mutant of PDS3 gene. Functional complementation confirmed that both the albino and dwarfphenotypes ofthepds3 mutant resulted from functional disruption of the PDS3 gene. Chloroplast development was arrested at the proplastid stage in thepds3 mutant. Further analysis showed that high level ofphytoene was accumulated in the pds3 mutant. Addition of exogenous GA3 could partially rescue the dwarf phenotype, suggesting that the dwarf phenotype ofthepds3 mutant might be due to GA deficiency. Microarray and RT-PCR analysis showed that disrupting PDS3 gene resulted in gene expression changes involved in at least 20 metabolic pathways, including the inhibition of many genes in carotenoid, chlorophyll, and GA biosynthesis pathways. Our data suggest that the accumulated phytoene in the pds3 mutant might play an important role in certain negative feedbacks to affect gene expression of diverse cellular pathways.  相似文献   

3.
4.
5.
During colonization by arbuscular mycorrhizal (AM) fungi plant roots frequently accumulate two types of apocarotenoids (carotenoid cleavage products). Both compounds, C(14) mycorradicin and C(13) cyclohexenone derivatives, are predicted to originate from a common C(40) carotenoid precursor. Mycorradicin is the chromophore of the "yellow pigment" responsible for the long-known yellow discoloration of colonized roots. The biosynthesis of apocarotenoids has been investigated with a focus on the two first steps of the methylerythritol phosphate (MEP) pathway catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). In Medicago truncatula and other plants the DXS2 isogene appears to be specifically involved in the AM-mediated accumulation of apocarotenoids, whereas in the case of DXR a single gene contributes to both housekeeping and mycorrhizal (apo)carotenoid biosynthesis. Immunolocalization of DXR in mycorrhizal maize roots indicated an arbuscule-associated protein deposition, which occurs late in arbuscule development and accompanies arbuscule degeneration and breakdown. The DXS2 isogene is being developed as a tool to knock-down apocarotenoid biosynthesis in mycorrhizal roots by an RNAi strategy. Preliminary results from this approach provide starting points to suggest a new kind of function for apocarotenoids in mycorrhizal roots.  相似文献   

6.
7.
Cara Cara is a spontaneous bud mutation of Navel orange (Citrus. sinensis L. Osbeck) characterized by developing fruits with a pulp of bright red coloration due to the presence of lycopene. Peel of mutant fruits is however orange and indistinguishable from its parental. To elucidate the basis of lycopene accumulation in Cara Cara, we analyzed carotenoid profile and expression of three isoprenoid and nine carotenoid genes in flavedo and pulp of Cara Cara and Navel fruits throughout development and maturation. The pulp of the mutant accumulated high amounts of lycopene, but also phytoene and phytofluene, from early developmental stages. The peel of Cara Cara also accumulated phytoene and phytofluene. The expression of isoprenoid genes and of carotenoid biosynthetic genes downstream PDS (phytoene desaturase) was higher in the pulp of Cara Cara than in Navel. Not important differences in the expression of these genes were observed between the peel of both oranges. Moreover, the content of the plant hormone ABA (abscisic acid) was lower in the pulp of Cara Cara, but the expression of two genes involved in its biosynthesis was higher. The results suggest that an altered carotenoid composition may conduct to a positive feedback regulatory mechanism of carotenoid biosynthesis in citrus fruits. Increased levels of isoprenoid precursors in the mutant that could be channeled to carotenoid biosynthesis may be related to the red-fleshed phenotype of Cara Cara.  相似文献   

8.
A phytoene desaturase (PDS) gene was cloned and characterized from the unicellular green microalga Chlamydomonas reinhardtii. Functional complementation analysis revealed C. reinhardtii PDS (CrPDS) catalyzes the conversion of phytoene to the colored carotenoid ζ-carotene. A single amino acid substitution, L505F, enhanced its desaturation activity by 29%, as indicated by an in vitro enzymatic assay. In addition, CrPDS-L505F exhibited 27.7-fold higher resistance to the herbicide norflurazon. Glass bead-mediated delivery displayed a high transformation efficiency of C. reinhardtii with CrPDS-L505F, demonstrating clearly that the engineered endogenous CrPDS is a dominant selectable marker for C. reinhardtii and possibly for other green algae. Furthermore, the expression of PDS could enhance the intracellular carotenoid accumulation of transformants, opening up the possibility of engineering the carotenogenic pathway for improved carotenoid production in microalgae.  相似文献   

9.
Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis-the conversion of phytoene to ζ-carotene. Decreased accumulation of downstream colored carotenoids suggested that the pds1-1 mutant is leaky for PDS activity. A screen for enhancers of the pds1-1 mutation yielded the pds1-2 allele, which completely lacks PDS activity. A second independent null mutant (pds1-3) was identified using DNA insertional mutagenesis. Both null mutants accumulate only phytoene and no other carotenoids. All three phytoene-accumulating mutants exhibited slower growth rates and reduced plating efficiency compared to wild-type cells and white phytoene synthase mutants. Insight into amino acid residues important for PDS activity was obtained through the characterization of intragenic suppressors of pds1-2. The suppressor mutants fell into three classes: revertants of the pds1-1 point mutation, mutations that changed PDS amino acid residue Pro64 to Phe, and mutations that converted PDS residue Lys90 to Met. Characterization of pds1-2 intragenic suppressors coupled with computational structure prediction of PDS suggest that amino acids at positions 90 and 143 are in close contact in the active PDS enzyme and have important roles in its structural stability and/or activity.  相似文献   

10.
The unicellular green alga Haematococcus pluvialis Flotow is known for its massive accumulation of ketocarotenoids under various stress conditions. Therefore, this microalga is one of the favored organisms for biotechnological production of these antioxidative compounds. Astaxanthin makes up the main part of the secondary carotenoids and is accumulated mostly in an esterified form in extraplastidic lipid vesicles. We have studied phytoene desaturase, an early enzyme of the carotenoid biosynthetic pathway. The increase in the phytoene desaturase protein levels that occurs following induction is accompanied by a corresponding increase of its mRNA during the accumulation period, indicating that phytoene desaturase is regulated at the mRNA level. We also investigated the localization of the enzyme by western-blot analysis of cell fractions and by immunogold labeling of ultrathin sections for electron microscopy. In spite of the fact that secondary carotenoids accumulate outside the chloroplast, no extra pathway specific for secondary carotenoid biosynthesis in H. pluvialis was found, at least at this early stage in the biosynthesis. A transport process of carotenoids from the site of biosynthesis (chloroplast) to the site of accumulation (cytoplasmatic located lipid vesicles) is implicated.  相似文献   

11.
Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
Regulation of carotenoid biosynthesis during tomato development.   总被引:22,自引:0,他引:22       下载免费PDF全文
Phytoene synthase (Psy) and phytoene desaturase (Pds) are the first dedicated enzymes of the plant carotenoid biosynthesis pathway. We report here the organ-specific and temporal expression of PDS and PSY in tomato plants. Light increases the carotenoid content of seedlings but has little effect on PDS and PSY expression. Expression of both genes is induced in seedlings of the phytoene-accumulating mutant ghost and in wild-type seedlings treated with the Pds inhibitor norflurazon. Roots, which contain the lowest levels of carotenoids in the plant, have also the lowest levels of PDS and PSY expression. In flowers, expression of both genes and carotenoid content are higher in petals and anthers than in sepals and carpels. During flower development, expression of both PDS and PSY increases more than 10-fold immediately before anthesis. During fruit development, PSY expression increases more than 20-fold, but PDS expression increases less than threefold. We concluded that PSY and PDS are differentially regulated by stress and developmental mechanisms that control carotenoid biosynthesis in leaves, flowers, and fruits. We also report that PDS maps to chromosome 3, and thus it does not correspond to the GHOST locus, which maps to chromosome 11.  相似文献   

14.
15.
Functional analysis of the early steps of carotenoid biosynthesis in tobacco   总被引:17,自引:0,他引:17  
Busch M  Seuter A  Hain R 《Plant physiology》2002,128(2):439-453
  相似文献   

16.
Accumulated in large amounts in carrot, carotenoids are an important product quality attribute and therefore a major breeding trait. However, the knowledge of carotenoid accumulation genetic control in this root vegetable is still limited. In order to identify the genetic variants linked to this character, we performed an association mapping study with a candidate gene approach. We developed an original unstructured population with a broad genetic basis to avoid the pitfall of false positive detection due to population stratification. We genotyped 109 SNPs located in 17 candidate genes – mostly carotenoid biosynthesis genes – on 380 individuals, and tested the association with carotenoid contents and color components. Total carotenoids and β-carotene contents were significantly associated with genes zeaxanthin epoxydase (ZEP), phytoene desaturase (PDS) and carotenoid isomerase (CRTISO) while α-carotene was associated with CRTISO and plastid terminal oxidase (PTOX) genes. Color components were associated most significantly with ZEP. Our results suggest the involvement of the couple PDS/PTOX and ZEP in carotenoid accumulation, as the result of the metabolic and catabolic activities respectively. This study brings new insights in the understanding of the carotenoid pathway in non-photosynthetic organs.  相似文献   

17.
Light-stimulated carotenoid biosynthesis associated with the transformation of etioplasts to chloroplasts was investigated after dark-grown maize (Zea mays) seedlings were transferred into light. These studies focused on the enzymes of the pathway to detect those enzyme activities that were stimulated in the light and thus that were responsible for increased biosynthesis of carotenoids. In preliminary experiments, norflurazon, an inhibitor of phytoene desaturase, was used to prevent phytoene being further metabolized to carotenoids. Light-dependent stimulation of phytoene accumulation indicated that the light-regulated steps are located in the pathway leading to phytoene synthesis. The use of the 14C- labeled precursors mevalonic acid, isopentenyl pyrophosphate, and farnesyl pyrophosphate pointed to increased activity of an enzyme involved in the biosynthetic steps between isopentenyl pyrophosphate and farnesyl pyrophosphate. Determination of the activities of all five enzymes of the pathway involved in the sequence from mevalonic acid to phytoene revealed that the only enzyme activity stimulated by light was isopentenyl pyrophosphate isomerase. Over a 3-h period of illumination, this enzyme activity, like carotenoid biosynthesis, was stimulated 2.8-fold.  相似文献   

18.
Astaxanthin is a high-value carotenoid which is used as a pigmentation source in fish aquaculture. Additionally, a beneficial role of astaxanthin as a food supplement for humans has been suggested. The unicellular alga Haematococcus pluvialis is a suitable biological source for astaxanthin production. In the context of the strong biotechnological relevance of H. pluvialis, we developed a genetic transformation protocol for metabolic engineering of this green alga. First, the gene coding for the carotenoid biosynthesis enzyme phytoene desaturase was isolated from H. pluvialis and modified by site-directed mutagenesis, changing the leucine codon at position 504 to an arginine codon. In an in vitro assay, the modified phytoene desaturase was still active in conversion of phytoene to ζ-carotene and exhibited 43-fold-higher resistance to the bleaching herbicide norflurazon. Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants. Some of the transformants had a higher carotenoid content in the green state, which correlated with increased nonphotochemical quenching. This measurement of chlorophyll fluorescence can be used as a screening procedure for stable transformants. Stress induction of astaxanthin biosynthesis by high light showed that there was accelerated accumulation of astaxanthin in one of the transformants compared to the accumulation in the wild type. Our results strongly indicate that the modified phytoene desaturase gene is a useful tool for genetic engineering of carotenoid biosynthesis in H. pluvialis.  相似文献   

19.
Li F  Murillo C  Wurtzel ET 《Plant physiology》2007,144(2):1181-1189
Carotenoids are a diverse group of pigments found in plants, fungi, and bacteria. They serve essential functions in plants and provide health benefits for humans and animals. In plants, it was thought that conversion of the C40 carotenoid backbone, 15-cis-phytoene, to all-trans-lycopene, the geometrical isomer required by downstream enzymes, required two desaturases (phytoene desaturase and zeta-carotene desaturase [ZDS]) plus a carotene isomerase (CRTISO), in addition to light-mediated photoisomerization of the 15-cis-double bond; bacteria employ only a single enzyme, CRTI. Characterization of the maize (Zea mays) pale yellow9 (y9) locus has brought to light a new isomerase required in plant carotenoid biosynthesis. We report that maize Y9 encodes a factor required for isomerase activity upstream of CRTISO, which we term Z-ISO, an activity that catalyzes the cis- to trans-conversion of the 15-cis-bond in 9,15,9'-tri-cis-zeta-carotene, the product of phytoene desaturase, to form 9,9'-di-cis-zeta-carotene, the substrate of ZDS. We show that recessive y9 alleles condition accumulation of 9,15,9'-tri-cis-zeta-carotene in dark tissues, such as roots and etiolated leaves, in contrast to accumulation of 9,9'-di-cis-zeta-carotene in a ZDS mutant, viviparous9. We also identify a locus in Euglena gracilis, which is similarly required for Z-ISO activity. These data, taken together with the geometrical isomer substrate requirement of ZDS in evolutionarily distant plants, suggest that Z-ISO activity is not unique to maize, but will be found in all higher plants. Further analysis of this new gene-controlled step is critical to understanding regulation of this essential biosynthetic pathway.  相似文献   

20.
Astaxanthin is a high-value carotenoid which is used as a pigmentation source in fish aquaculture. Additionally, a beneficial role of astaxanthin as a food supplement for humans has been suggested. The unicellular alga Haematococcus pluvialis is a suitable biological source for astaxanthin production. In the context of the strong biotechnological relevance of H. pluvialis, we developed a genetic transformation protocol for metabolic engineering of this green alga. First, the gene coding for the carotenoid biosynthesis enzyme phytoene desaturase was isolated from H. pluvialis and modified by site-directed mutagenesis, changing the leucine codon at position 504 to an arginine codon. In an in vitro assay, the modified phytoene desaturase was still active in conversion of phytoene to zeta-carotene and exhibited 43-fold-higher resistance to the bleaching herbicide norflurazon. Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants. Some of the transformants had a higher carotenoid content in the green state, which correlated with increased nonphotochemical quenching. This measurement of chlorophyll fluorescence can be used as a screening procedure for stable transformants. Stress induction of astaxanthin biosynthesis by high light showed that there was accelerated accumulation of astaxanthin in one of the transformants compared to the accumulation in the wild type. Our results strongly indicate that the modified phytoene desaturase gene is a useful tool for genetic engineering of carotenoid biosynthesis in H. pluvialis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号