首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Sharkawi 《Life sciences》1984,35(23):2353-2357
The activity of liver alcohol dehydrogenase (LADH) from rats sacrificed two hours after the administration of ethanol 3, 4 or 5 g/kg intraperitoneally was significantly inhibited compared to the activity of LADH from control rats. LADH activity was inversely related to the dose of ethanol administered, to the concentration of ethanol in the liver, and to the concentration of ethanol in the blood. The clearance of blood ethanol in rats was dose-dependent and was inversely related to the dose administered. The half-life of ethanol elimination increased as the dose of ethanol increased. These results suggest that ethanol-induced inhibition of LADH can occur in vivo and that the level of activity of this enzyme determines the rate of oxidation of ethanol.  相似文献   

2.
The effect of ethanol on the cardiovascular system (ECG, heart rate, blood pressure) was studied in anesthetized, nonstressed or stressed rats. In anesthetized rats, ethanol showed no effect on heart rate or ECG. In nonstressed rats, ethanol sedated the animals but increased heart rate significantly. This ethanol induced tachycardia seemed the result of a direct stimulation of the sympathetic nerves to the heart. Blood pressure was not significantly affected by ethanol in these nonstressed rats. In stressed rats, marked behavioral excitation and significant increases in heart rate and blood pressure were noted. Ethanol pretreatment calmed the animals considerably during restraint. Ethanol did reduce slightly the stress-induced tachycardia but markedly reduced or antagonized stress-induced blood pressure increases. No major changes in the ECG were noted during these studies with the exception of a few individual animals which showed pathologic ECG responses to ethanol. These data show that ethanol affects cardiovascular functions differently in anesthetized, nonstressed or stressed rats, and that ethanol can significantly reduce or antagonize stress-induced behavioral excitation, tachycardia and hypertension.  相似文献   

3.
Intravenous administration of dodecanedioate (or hexadecanedioate) to anaesthetized rats resulted in the urinary excretion of medium-chain dicarboxylic acids (adipic, suberic and sebacic acids). In control animals, the recovery of infused dodecanedioate in the form of urinary medium-chain dicarboxylic acids corresponded to 30% of the infused dose (22 mumol/100 g body mass). This excretion was markedly increased in riboflavin-deficient rats (75% of the infused dose) while it was severely decreased in clofibrate-treated animals (less than 5%). The initial velocity of this process was similar in both control and riboflavin-deficient rats. In control animals, halving the infused dose of dodecanedioate to 11 mumol/100 g body mass resulted in a halving of the initial rate of the urinary appearance of medium-chain dicarboxylates, while doubling the amount of dicarboxylate administered to 44 mumol/100 g body mass did not further modify this velocity, but rather prolonged the duration of the excretion of the resulting products. In riboflavin-deficient and clofibrate-treated rats, the hepatic peroxisomal dicarboxylyl-CoA beta-oxidation activity measured as dicarboxylyl-CoA H2O2-generating oxidase and cyanide-insensitive dicarboxylyl-CoA-dependent NAD+ reduction was increased about threefold and tenfold, respectively. Dicarboxylyl-CoA synthetase activity was normal in the clofibrate-treated rat livers but was increased more than tenfold in the livers from the riboflavin-deficient animals. This work provides evidence that in the rat both mitochondria and peroxisomes are involved in the catabolism of dicarboxylates.  相似文献   

4.
The cause of the urinary alcohol level (UAL) cycle in rats fed ethanol at a constant rate has been shown to involve the hypothalamic-pituitary thyroid axis. Because the effect of thyroid hormone on the metabolic rate is augmented by catecholamines, the role of catecholamines was investigated by using the intragastric ethanol feeding model of alcoholic liver disease in which the UAL cycles over a 6- to 10-day period. The diet was supplemented with ephedrine and caffeine to test the hypothesis that the UAL cycle involves catecholamines. The UAL was followed to see whether the cycle was ablated by catecholamine supplements. Ethanol fed alone increased the blood levels of catecholamines significantly more than did ephedrine fed alone. However, blood catecholamine levels were significantly higher when ethanol was fed with ephedrine compared with the sum of ethanol and ephedrine fed alone. This indicated that the effect of ethanol and ephedrine were synergistic. The UAL cycle was completely ablated in the ethanol + ephedrine-fed rats. These rats tolerated a much higher dose of ethanol, indicating that they metabolized alcohol faster due to an increase in metabolic rate caused by ephedrine. In the ethanol + ephedrine-fed rats the liver pathology included significantly higher alanine amino transferase (ALT) in the blood and centrilobular ischemic necrosis in the liver. Necrosis was not present in the rats fed ephedrine alone. In conclusion, catecholamine supplements prevented the UAL cycle by increasing the metabolic rate to the point at which fluctuations in the metabolic rate caused by alcohol were prevented.  相似文献   

5.
The hypolipidemic fibrates have been identified as agonists of the peroxisome proliferator-activated receptor alpha (PPARalpha), which plays a critical role in the regulation of cardiac fatty acid metabolism. Despite the widespread clinical use of fibrates, their role in myocardial oxidative stress and fatty acid composition is less known. In this study, male Sprague-Dawley rats were treated with either vehicle (olive oil, 1 ml/kg) or clofibrate (300 mg/kgday i.p.) for 1-14 days. Lipid peroxidation in heart homogenate was determined by thiobarbituric acid reactive substance (TBARS) assay. Results show that hearts from clofibrate-treated rats are more susceptible to FeSO(4)-induced TBARS production. The antioxidants including catalase and glutathione-related enzymes were marginally affected. We demonstrated that myocardial fatty acid composition was dramatically altered by clofibrate treatment. In hearts from clofibrate-treated rats, the principal n-6 polyunsaturated fatty acids (PUFAs), linoleic acid (C18:2 n-6) and arachidonic acid (C20:4 n-6), was significantly reduced, while the content of the principal n-3 PUFA, docosahexaenoic acid (C22:6 n-3), was markedly increased. The overall effect was to reduce n-6/n-3 ratio and increase the unsaturation extent of myocardial fatty acids. Functional study showed that hearts from clofibrate-treated rats had an improved recovery of post-ischemic contractile function and reduced ischemia/reperfusion (I/R)-induced infarct size. The data shows that clofibrate has a profound impact on cardiac fatty acid composition, which may contribute to its cardioprotective effect.  相似文献   

6.
Administration of clofibrate for 21 days to rats increased the malic enzyme activity in the kidney cortex by about 80 per cent. This effect seems to be specific since the drug did not alter significantly the activity either of lactate dehydrogenase, citrate synthase or total mitochondrial protein content in this organ. The increase in activity of malic enzyme in the 13,000 g supernatant (extramitochondrial) fraction in rats treated with the drug was about 80 per cent, whereas in the pellet (mitochondrial fraction) it was about 40 per cent. The specific activity of malic enzyme in the kidney cortex cytosol from clofibrate-treated rats was about twice that in controls. In contrast clofibrate treatment did not affect its specific activity in isolated mitochondria. Calculations showed that 0.57 and 0.53 mumoles min-1 g-1 wet tissue of mitochondrial malic enzyme was obtained in control and clofibrate-treated rats respectively. Thus, clofibrate feeding increases the amount of cytoplasmic but not mitochondrial malic enzyme activity.  相似文献   

7.
Exposure of male Wistar rats to 12.3 mumol/l (300 ppm) isopropanol vapour for 5-21 weeks, 5 days a week for 6 h daily with a simultaneous ethanol administration in drinking water (5% v/v) caused a significant increase in isopropanol removal as assessed by blood isopropanol and acetone determinations. Ethanol treatment caused a marked synergistic effect during early exposure. Neurochemical studies revealed decreased superoxide dismutase and azoreductase activities at the end of the exposure whereas increased protein degradation was found in glial cells isolated from ethanol-fed rats throughout the experiment. Analyses of spinal cord axon lipid composition showed increases in cholesterol content in relation to lipid phosphorus in animals exposed to isopropanol or to the isopropanol and ethanol combination. Behavioural tests indicated minor effects on emotional reactivity from the 10th week onwards with isopropanol exposure whereas caffeine-stimulated activity was augmented only in rats ingesting ethanol. Co-exposure to isopropanol vapour abolished the increased excitability. The data indicate that marked metabolic and functional adaptation towards the small-molecular-weight alcohols takes place at moderate dose levels.  相似文献   

8.
The release of carnitine is an important metabolic function of the liver. In the present study, we have investigated the effect of increased carnitine concentration on the hepatic release of carnitine. Hepatic carnitine concentration was increased in rats by clofibrate treatment. Release of carnitine was investigated as its efflux from perfused liver and its secretion into bile. A significantly smaller proportion of the hepatic pool of carnitine was released into the perfusion medium when carnitine concentration was increased by clofibrate treatment. However, the amount of carnitine released (nmol/g liver) was comparable to that of control rats. Increased carnitine concentration by clofibrate treatment also did not affect the rate of biliary secretion of carnitine. In control rats, nearly 50% of the released carnitine, in both the perfusion medium and bile, was acylcarnitine whereas in clofibrate-treated rats 35% of the released carnitine was acylcarnitine. Release into the perfusion medium was the major route for the hepatic export of carnitine. We conclude that when hepatic carnitine concentration is increased by clofibrate treatment, a smaller proportion of the hepatic carnitine pool is released, but the amount of carnitine released (nmol/g liver) is not greatly different than that from control animals.  相似文献   

9.
There was an increase in blood ethanol levels following the intraperitoneal or intravenous administration of ethanol to rats 8 days after adrenalectomy, compared to control animals. This was due to a 20% decrease in total body water and an increased rate of absorption following intraperitoneal administration. There was no change in the rate of ethanol metabolism.  相似文献   

10.
The natural aversion of rats to ethanol was overcome by subjecting rats to immobilization stress for a two-week period during which increasing concentrations of ethanol were offered in the drinking water. The rats subjected to this regimen consumed 47% of total calories as ethanol, indefinitely, following removal of the stress. Ethanol was consumed at a rate of 17.1 g/kg body weight along with sufficient stock diet to assure adequate nutrition in the absence of ethanol.  相似文献   

11.
In control rats, long-chain monocarboxylyl-CoA, omega-hydroxymonocarboxylyl-CoA, and dicarboxylyl-CoA esters were substrates for hepatic, renal, and myocardial peroxisomal beta-oxidation. The latter enzyme system could not be detected in skeletal muscle. Clofibrate treatment resulted in an enhancement of peroxisomal beta-oxidizing capacity in various tissues. Intact mitochondria from control rat liver and kidney cortex incubated in the presence of L-carnitine were capable of oxidizing long-chain monocarboxylyl-CoAs and omega-hydroxymonocarboxylyl-CoAs but not dicarboxylyl-CoAs. However, control rat liver mitochondria permeabilized by digitonin oxidized dodecanedioyl-CoA indicating that the liver mitochondrial beta-oxidation system can act on dicarboxylyl-CoA esters even if the overall intact mitochondrial system is inactive on these substrates. Intact liver mitochondria from clofibrate-treated animals rapidly oxidized lauroyl-CoA and 12-hydroxylauroyl-CoA but not dodecanedioyl-CoA. These mitochondria were active on hexadecanedioyl-CoA and this activity amounted to 20-25% of that measured with palmitoyl-CoA and 16-hydroxypalmitoyl-CoA as substrates. No mitochondrial dicarboxylyl-CoA oxidation could be detected in kidney cortex from animals receiving clofibrate in their diet. Heart and skeletal muscle intact mitochondria from untreated and clofibrate-treated rats were capable of oxidizing each type of acyl-CoA as a substrate. Dicarboxylyl-CoA synthetase and carnitine dicarboxylyltransferase activities were detected in various tissues from untreated and clofibrate-treated rats with the exception of carnitine dodecanedioyltransferase reaction in livers from untreated and clofibrate-treated rats. In skeletal muscle, the acyl-CoA synthetase activities could be detected only in the presence of detergents.  相似文献   

12.
Studies were made on the mechanism by which livers of ethanol-treated rats take up an increased fraction of the total flux of unesterified fatty acid in serum. It was found that ethanol (0.7g/kg) causes a twofold rise in the serum content of liver, and that this serum is in rapid equilibrium with the general circulation. The fractional hepatic uptake from serum of group of compounds with varying uptake mechanisms and metabolic fates was studied in control and ethanol-treated animals. All the compounds tested, including unesterified fatty acid, showed an enhanced uptake when ethanol was given. For one of the compounds, carbon tetrachloride, a dose/response relationship was established between the amount administered, the amount taken up by liver, and the amount metabolized. These findings were interpreted to mean that this dose of ethanol causes the liver to receive an increased flow of blood, and as a result all compounds present and capable of being taken by liver are taken up at an increased rate. Hepatic blood flow was measured by a technique that monitors the rate of clearance of a colloidal lipid emulsion. It was found that ethanol increased hepatic blood flow by about 60%. This effect of ethanol on hepatic blood flow provides an explanation for the fatty liver and the synergistic effect between an acute dose of ethanol and carbon tetrachloride. A hypothesis to explain why a moderate dose of ethanol causes triglyceride to accumulate in liver is presented.  相似文献   

13.
Effect of ethanol administration on the severity of myocardial infarction induced by isoproterenol in rats was studied. Even though serum CPK and GOT levels as well as the extent of myocardial damage as revealed by histopathological studies, were similar, the survival rate was higher in rats administered ethanol. Concentration of cholesterol and triglycerides in the serum and heart in rats given ethanol and isoproterenol seems to be the additive effect caused individually by ethanol and isoproterenol. Myocardial alcohol dehydrogenase and aldehyde dehydrogenase both showed increased activity in rats treated with ethanol. The rate of recovery from myocardial infarction however, was slower in rats treated with ethanol as judged from the serum CPK value.  相似文献   

14.
Changes in peroxisomal CoA pools in the liver of fasted, diabetic, high-fat diet-fed and clofibrate-treated rats were studied. Total-CoA increased slightly in the fasted group and markedly in the diabetic, high-fat and clofibrate-treated groups. Fractionation studies showed that changes in free CoA levels were much greater in peroxisomes than in mitochondria. The concentrations of CoAs were calculated from the contents of CoAs in organelles and the changes in volume of organelles under these conditions; the concentration of total CoA in peroxisomes was higher than that in cytosol, but lower than that in mitochondria. These changes were accompanied by an increase in the activity of peroxisomal beta-oxidation. The results obtained from these experiments indicate that the peroxisomal beta-oxidation system is controlled not only at the enzyme level but also at the substrate or co-factor level.  相似文献   

15.
Total RNA, extracted with guanidinium thiocyanate from liver of clofibrate-treated rats, was translated in vitro. Heating the RNA at 60 degrees C for 5 min before translation increased the synthesis of three peroxisomal polypeptides 10-100-fold. Preproalbumin synthesis increased 10-fold. Total incorporation of [35S]methionine into proteins merely doubled. Heating is essential for reproducible and adequate translation of mRNAs coding for peroxisomal and some other proteins.  相似文献   

16.
The oxidation of ethanol by isolated liver cells from starved rats is limited by the rate of removal of reducing equivalents generated in the cytosol by alcohol dehydrogenase. Evidence is presented suggesting that, in these cells, transfer of reducing equivalents from the cytosol to the mitochondria is regulated by the intracellular concentrations of the intermediates of the malate-aspartate and glycerol 3-phosphate cycles, as well as by flux through the respiratory chain. In liver cells isolated from fed rats, the availability of substrate increased the cell content of intermediates of the hydrogen-transfer cycles, and enhanced ethanol uptake. Under these conditions, ethanol consumption is limited by the availability of ADP for oxidative phosphorylation.  相似文献   

17.
《Life sciences》1993,53(10):PL165-PL170
The concentration gradients of ethanol and acetate across liver and Gl were determined in overnight starved rats infused with ethanol at a rate (15 μmol/min/rat) below and a rate (30 μmol/min/rat) exceeding the rate of ethanol disposal in the animals. Plasma concentrations of ethanol in the systemic circulation reached steady-state levels of ∼0.6 mM between 30 and 60 min during low rate of infusion; increased steadily from 3.5 mM at 30 min to 6.4 mM at 2 h during high rate of infusion. Gl metabolism was determined by concentration differences in aorta and portal vein; hepatic metabolism by differences in hepatic influx and hepatic veins. Hepatic influx was the sum of the concentrations in aorta and portal vein, each multiplied by their fractional contributions to heoatic blood supply. At low rate of infusion, hepatic extraction of ethanol was nearly complete and could be accounted for entirely by the acetate released from liver. The concentrations of ethanol in aorta were greater but not significantly than that in portal vein. At high rate of infusion, hepatic and Gl gradients of ethanol remained constant despite changes in circulating concentrations of ethanol. The concentration gradients of ethanol and acetate across liver, though different in signs, were identical in magnitude. Gl gradient indicating uptake of ethanol was statistically significant and was about 30 % of hepatic gradient. Enzyme activity of alcohol dehydrogenase in stomach was found to be about 10 % of that in liver. Our results thus show that acetate generated during ethanol oxidation is completely released from liver in rats, in either conscious or anesthetized state under submaximal or maximal condition of ethanol disposal, and that Gl metabolism of circulating ethanol can be as high as one third of the metabolism in liver.  相似文献   

18.
Regulation of ethanol metabolism in the rat   总被引:2,自引:0,他引:2  
The purpose of these experiments was to examine the factors which regulate ethanol metabolism in vivo. Since the major pathway for ethanol removal requires flux through hepatic alcohol dehydrogenase, the activity of this enzyme was measured and found to be 2.9 mumol/(min X g liver). Ethanol disappearance was linear for over 120 min in vivo and the blood ethanol fell 0.1 mM/min; this is equivalent to removing 20 mumol ethanol/min and would require that flux through alcohol dehydrogenase be about 60% of its measured maximum velocity. To test whether ethanol metabolism was limited by the rate of removal of one of the end products (NADH) of alcohol dehydrogenase, fluoropyruvate was infused to reoxidize hepatic NADH and to prevent NADH generation via flux through pyruvate dehydrogenase. There was no change in the rate of ethanol clearance when fluoropyruvate was metabolized. Furthermore, enhancing endogenous hepatic NADH oxidation by increasing the rate of urea synthesis (converting ammonium bicarbonate to urea) did not augment the steady-state rate of ethanol oxidation. Hence, transport of cytoplasmic reducing power from NADH into the mitochondria was not rate limiting for ethanol oxidation. In contrast, ethanol oxidation at the earliest time periods could be augmented by increasing hepatic urea synthesis.  相似文献   

19.
The contribution of the stomach to ethanol oxidation in the rat   总被引:5,自引:0,他引:5  
To estimate the amount of ethanol that can be oxidized in the stomach, steady-state conditions were created in a group of fed rats by giving a loading dose of ethanol (2 g/kg body wt I.V.) followed by continuous infusion either intravenously or intragastrically. The rate of ethanol oxidation was calculated from the rate of infusion required to maintain steady blood levels of approximately 30 mM for at least 3 hours. Gastrointestinal ethanol concentrations and total contents also remained steady. The rate of ethanol oxidation was 19.3% faster during intragastric than during intravenous infusion (p less than 0.01). When measured at the prevailing luminal ethanol concentration (145 mM) and expressed per body weight, the gastric ADH activity represented 14% of the hepatic activity at 30 mM ethanol, suggesting that gastric ADH activity could account for most of the increased rate of oxidation when ethanol is given intragastrically. Thus, gastric ethanol oxidation by a high Km ADH in the rat represents a significant fraction of the total rate of ethanol oxidation and it is therefore one of the factors which determines the bioavailability of orally administered ethanol.  相似文献   

20.
A study was made of factors regulating the oxidation of ethanol in liver cells isolated from fed and fasted rats. The rate of ethanol oxidation was greater in liver cells from fed rats than from fasted rats. Inhibitors of the malate-aspartate shuttle decreased the rate of ethanol oxidation, suggesting that this shuttle contributes to the reoxidation of cytosolic NADH produced during the oxidation of ethanol. The greater inhibition of ethanol oxidation by antimycin than by rotenone suggests that the α-glycerophosphate shuttle also plays an important role in transporting reducing equivalents. The components of the malate-aspartate and α-glycerophosphate shuttles stimulated ethanol oxidation to a greater extent in liver cells from fasted rats than those from fed rats, suggesting that in the fasted state, ethanol oxidation is regulated by the intracellular concentrations of substrate shuttle components which transfer reducing equivalents into the mitochondria. Therefore, uncoupling agents, which stimulate oxygen consumption, do not stimulate ethanol oxidation, and concentrations of antimycin which depress oxygen uptake are much less effective in decreasing ethanol oxidation. By contrast, in liver cells from fed rats, the rate of ethanol oxidation was increased by uncoupling agents. Such stimulation was not observed when cells were prepared in the absence of albumin, probably due to leakage of shuttle substrates which leads to abnormally low intracellular levels. Indeed, when the shuttle substrates were added back to these preparations, uncouplers were effective in stimulating the rate of ethanol oxidation beyond the stimulation produced by the shuttle substrates alone. Thus, under conditions of sufficient intracellular levels of the intermediates of the substrate shuttles, ethanol oxidation is regulated by the capacity of the mitochondrial respiratory chain to reoxidize reducing equivalents generated by the alcohol dehydrogenase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号