首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Lysobacter enzymogenes produces an inducible beta-lactamase and induction with 100 micrograms ampicillin ml-1 resulted in an increase of more than 100-fold in enzyme activity. Various other beta-lactam antibiotics also served as effective inducers. The enzyme was obtained from cells by osmotic shocking to release periplasmic components and it was purified primarily by ion-exchange chromatography and PAGE. The beta-lactamase consists of one polypeptide with a molecular mass of about 28 kDa and an isoelectric point greater than 9.6. It is strongly inhibited by p-chloromercuribenzoate and clavulanic acid but not by EDTA. The enzyme readily hydrolyses several penicillins and cephalosporins, but not oxacillin or cloxacillin. The enzyme therefore belongs to group 2b of the bacterial beta-lactamases.  相似文献   

2.
Lysobacter enzymogenes produces an extracellular phosphatase (EC. 3.1.3.1) during the stationary phase of growth. The cells also produce a cell-associated alkaline phosphatase. This enzyme is found in the particulate fraction of cell extracts and may be membrane bound. The production of both phosphatases, especially the extracellular enzyme, is reduced by inorganic phosphate. The extracellular phosphatase was purified to a specific activity of 270 U/mg primarily by chromatography on carboxymethyl cellulose and gel filtration. The enzyme is stable under normal storage conditions but is rapidly inactivated above 70 degrees. It consists of one polypeptide with an approximate molecular weight of 25,000. The pH optimum is 7.5, and the Km for p-nitrophenylphosphate is 2.2 X 10(-4) M. The enzyme degrades a number of other phosphomonoesters but at a reduced rate compared with the rate obtained with p-nitrophenylphosphate. Phosphate and arsenate inhibit the enzyme, but EDTA and other chelating agents have no effect. The lack of a metal ion requirement for activity, the lower molecular weight, the soluble nature of the enzyme, and the lower pH optimum clearly distinguish the extracellular phosphatase from the cell-associated phosphatase and from other bacterial phosphatases.  相似文献   

3.
WAP-8294A is a group of cyclic lipodepsipeptides and considered as the first-in-class new chemical entity with potent activity against methicillin-resistant Staphylococcus aureus. One of the roadblocks in developing the WAP-8294A antibiotics is the very low yield in Lysobacter. Here, we carried out a systematic investigation of the nutritional and environmental conditions in an engineered Lenzymogenes strain for the optimal production of WAP-8294A. We developed an activity-based simple method for quick screening of various factors, which enabled us to optimize the culture conditions. With the method, we were able to improve the WAP-8294A yield by 10-fold in small-scale cultures and approximately 15-fold in scale-up fermentation. Additionally, we found the ratio of WAP-8294A2 to WAP-8294A1 in the strains could be manipulated through medium optimization. The development of a practical method for yield improvement in Lysobacter will facilitate the ongoing basic research and clinical studies to develop WAP-8294A into true therapeutics.  相似文献   

4.
Lysobacter enzymogenes produces an alkaline phosphatase which is secreted into the medium. The gene for the enzyme (phoA) was isolated from a recombinant lambda library. It was identified within a 4.4-kb EcoRI-BamH1 fragment, and its sequence was determined by the chain termination method. The structural gene consists of an open reading frame which encodes a 539-amino-acid protein with a 29-residue signal sequence, followed by a 119-residue propeptide, the 281-residue mature phosphatase, and a 110-residue carboxy-terminal domain. The roles of the propeptide and the carboxy-terminal peptide remain to be determined. A molecular weight of 30,000 was determined for the mature enzyme from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid sequence was compared with sequences available in the current protein data base, and a region of the sequence was found to show considerable homology with sequences in mammalian type 5 iron-containing purple acid phosphatases.  相似文献   

5.
DNA binding proteins present in the cytoplasm and nuclei of term placenta were isolated by DNA-cellulose chromatography and analysed by electrophoresis in high resolution polyacrylamide gradient gels. A denatured DNA specific protein of approximate molecular weight 34 000 daltons was the predominant DNA binding protein of the cytoplasm; this protein consisted of over 65% of the total DNA binding proteins of the 0.15 M NaCl eluate of the cytoplasm. The cytoplasmic extracts contained two additional DNA binding proteins of molecular weight 24 000 and 18 000 daltons and these proteins bound preferentially to ds DNA. All the three DNA binding proteins were also present in the nuclei and electrophoresis of histones in adjacent lanes indicated that they are not histones. The 34 000-dalton DNA binding protein has been purified by ammonium sulphate fractionation followed by phosphocellulose (PC) chromatography. The DBP eluted from the PC column between 0.125–0.15M potassium phosphate. PC fractions containing electrophoretically pure 34KD DBP showed an endonuclease activity capable of converting plasmid pBR 322 DNA to the linear form. Maximum endonucleolytic activity was observed in the presence of 3–5 mM Mg2+ and the enzyme activity was completely inhibited by 3 mM ethylenediamine tetraacetate.  相似文献   

6.
AIMS: The aim of this study was to determine the keratinolytic ability of a range of bacteria and subsequently, to characterize the keratinase showing the greatest biotechnological potential. METHODS AND RESULTS: Nine bacteria, reported to produce extracellular proteases, were screened for production of keratinases. Of these, Lysobacter NCIMB 9497 exhibited the highest keratinolytic activity. The keratinase from this strain (Mr 148 kDa) was purified and characterized. Optimum activity occurred at 50 degrees C; no inhibition was demonstrated by phenylmethylsulphonyl fluoride (PMSF), but inhibition by EDTA was demonstrated. CONCLUSIONS: This study indicates that keratinase is a metalloprotease with a high degree of keratinolytic activity and stability. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first detailed report of a metalloprotease with keratinolytic activity. The novel reaction mechanism, degree of keratinolytic activity and stability indicate considerable biotechnological potential in the leather industry, and in the processing of poultry waste.  相似文献   

7.
8.
DNA-binding proteins present in fourth instar larvae of Anopheles stephensi were isolated by affinity chromatography on native and denatured DNA cellulose columns and analyzed by electrophoresis on polyacrylamide gels. A denatured DNA-specific protein with an approximate molecular weight of 30 kDa was the predominant DNA binding protein of larvae. This protein was purified to electrophoretic homogeneity by ammonium sulfate fractionation followed by phosphocellulose chromatography. The purified 30 kDa binding protein showed an endonucleolytic activity capable of converting pBR 322 supercoiled DNA to the circular form. Maximum endonucleolytic activity was observed in the presence of 5 mM Mg(2+) at pH 7.4. Enzyme activity was completely inhibited by EDTA.  相似文献   

9.
In studies on cellulase production by the cell-1 mutant of Neurospora crassa, eight enzymes (three exoglucanases, four endoglucanases, and one beta-glucosidase) were identified and characterized by gel filtration, ion exchange chromatography, and chromatofocusing. After purification, each of the proteins ran as a single band in polyacrylamide gel electrophoresis, using both native and denaturing gels. The molecular weights of the proteins were found to be between 70,000 and 22,000 daltons, and all were glycosylated, with carbohydrate contents ranging between 5.6% and 36%.  相似文献   

10.
A deoxyribonuclease was partially purified from the free-living nematodeCaenorhabditis elegans. The DNase functioned as an endonuclease and introduced both single-strand nicks and double-strand breaks into DNA. The enzyme hydrolyzed double-stranded DNA seven times more rapidly than single-stranded DNA. DNase activity was not affected by the addition of divalent cations below 1mm but was inhibited at higher ionic concentrations. In addition, the enzyme was not inhibited in the presence of 10mm EDTA. The enzyme was inhibited by salt concentrations greater than 20mm. Three independent mutations in thenuc-1 gene were shown to reduce nuclease activity to less than 1% of that seen in wild-type organisms. This work was supported by National Institutes of Health Grant AG03161 and a TCU Research Foundation Grant. Some stocks used in these experiments were obtained from theCaenorhabditis Genetics Center, which is supported by Contract NOI-AG-9-2113 between the NIH and the curators of the University of Missouri.  相似文献   

11.
The major ribonuclease of adult guinea pig epidermis has been isolated and purfied over 1000-fold by a combination of ammonium sulfate fractionation, affinity and ion-exchange chromatography, and electrophoresis. The purified enzyme is free from phosphodiesterase and phosphatase activities. The ribonuclease is optimally active near neutrality in phosphate buffer, with a Km of 3mu g/ml toward [14-C]RNA from Erhlich ascites tumor cells. (here are no metal requirements for activity. The enzyme catalyzes the endonucleolytic hydrolysis of high molecular weight yeast RNA and it also hydrolyzes polycytidylic and polyuridylic acids, but not polyadenylic, polyguanylic, and polyinosinic acids. The apparent molecular weight of the active enzyme is 28 500.  相似文献   

12.
Lysobacter enzymogenes ATCC 29487 (UASM 495) produces an outer-membrane-associated phosphatase and an excreted phosphatase. The cell-associated enzyme was compared to phosphatases of nine other Gram-negative gliding bacteria and to that of Escherichia coli. The other three species of the genus Lysobacter also produce a particulate, cell-associated phosphatase. Antiserum prepared against the phosphatase from the outer membrane of L. enzymogenes effectively precipitated the phosphatases of two other L. enzymogenes strains and the enzymes of L. antibioticus, L. brunescens and L. gummosus. Some inhibition of the enzyme by the antiserum also was observed. No significant reaction could be detected between the antiserum and the cell-associated phosphatases of species of Cytophaga johnsonae, 'C. compacta', Myxococcus xanthus, E. coli and the excreted phosphatase of L. enzymogenes. The results indicate that the four species of the genus Lysobacter are closely related despite their physiological differences and that the outer-membrane-associated phosphatases of these organisms have different structural characteristics than the phosphatases of the other Gram-negative bacteria that were used. Furthermore, differences in the amino acid compositions of the cell-associated and the excreted phosphatase of L. enzymogenes confirm the immunological results and are in agreement with the physical and chemical differences noted between the two enzymes.  相似文献   

13.
An N-acyl homoserine lactonase gene aiiA, transcribed by a strong and constitutive Escherichia coli promoter Plpp (Accession No. EU723847), was transformed into Lysobacter enzymogenes strain OH11, creating strain OH11A. The N-acyl-homoserine lactone (AHL)-degradation assay showed that transformant OH11A acquired the ability to degrade AHL molecules produced by Agrobacterium tumefaciens, Pectobacterium carotovorum, Pseudomonas syringae pv. tomato strain DC3000 and Acidovorax avenae subsp. citrulli. Pathogenicity tests showed that while the parental strain OH11 did not reduce P. carotovorum infection, the transformant OH11A caused a strong reduction of Pectobacterium virulence on Chinese cabbage and cactus, whereas strain OH11A did not seem to interfere with the normal growth of this pathogen in cabbages. In antimicrobial activity assays, strain OH11A and OH11 showed similar antimicrobial activity against Phytophthora capsici and Sclerotinia sclerotiorum. This work provided a new strategy for developing genetically engineered multi-functional L. enzymogenes strains that possessed the ability to biologically control fungal pathogens and reduce bacterial pathogenicity.  相似文献   

14.
A serine protease secreted by the haloalkaliphilic archaeon Natrialba magadii at the end of the exponential growth phase was isolated. This enzyme was purified 83 fold with a total yield of 25% by ethanol precipitation, affinity chromatography, and gel filtration. The native molecular mass of the enzyme determined by gel filtration was 45 kDa. Na. magadii extracellular protease was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 1.5 M NaCl. The enzyme was stable and had a broad pH profile (6–12) with an optimum pH of 8–10 for azocasein hydrolysis. The protease was strongly inhibited by diisopropyl fluorophosphate (DFP), phenylmethyl sulfonylfluoride (PMSF), and chymostatin, indicating that it is a serine protease. It was sensitive to denaturing agents such as SDS, urea, and guanidine HCl and activated by thiol-containing reducing agents such as dithiotreitol (DTT) and 2-mercaptoethanol. This protease degraded casein and gelatin and showed substrate specificity for synthetic peptides containing Phe, Tyr, and Leu at the carboxyl terminus, showing that it has chymotrypsin-like activity. Na. magadii protease presented no cross-reactivity with polyclonal antibodies raised against the extracellular protease of Natronococcus occultus, suggesting that although these proteases share several biochemical traits, they might be antigenically unrelated. Received: October 1, 1999 / Accepted: February 1, 2000  相似文献   

15.
A major laccase isozyme (Lac 1) was isolated from the culture fluid of an edible basidiomycetous mushroom, Grifola frondosa. Lac 1 was revealed to be a monomeric protein with a molecular mass of 71 kDa. The N-terminal amino acid sequence of Lac 1 was highly similar to those of laccases of some other white-rot basidiomycetes. Lac 1 showed the typical absorption spectrum of a copper-containing enzyme. The enzyme was stable in a wide pH range (4.0 to 10.0), and lost no activity up to 60 °C for 60 min. The optimal pH of the enzyme activity varied among substrates. The K(m) values of Lac 1 toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 2,6-dimethoxyphenol, guaiacol, catechol, and 3,4-dihydroxy-L-phenylalanine were 0.0137 mM, 0.608 mM, 0.531 mM, 2.51 mM, and 0.149 mM respectively. Lac 1 activity was remarkably inhibited by the chloride ion, in a reversible manner. Lac 1 activity was also inhibited by thiol compounds.  相似文献   

16.
Lysobacter enzymogenes strain N4-7 produces multiple biochemically distinct extracellular beta-1,3-glucanase activities. The gluA, gluB, and gluC genes, encoding enzymes with beta-1,3-glucanase activity, were identified by a reverse-genetics approach following internal amino acid sequence determination of beta-1,3-glucanase-active proteins partially purified from culture filtrates of strain N4-7. Analysis of gluA and gluC gene products indicates that they are members of family 16 glycoside hydrolases that have significant sequence identity to each other throughout the catalytic domain but that differ structurally by the presence of a family 6 carbohydrate-binding domain within the gluC product. Analysis of the gluB gene product indicates that it is a member of family 64 glycoside hydrolases. Expression of each gene in Escherichia coli resulted in the production of proteins with beta-1,3-glucanase activity. Biochemical analyses of the recombinant enzymes indicate that GluA and GluC exhibit maximal activity at pH 4.5 and 45 degrees C and that GluB is most active between pH 4.5 and 5.0 at 41 degrees C. Activity of recombinant proteins against various beta-1,3 glucan substrates indicates that GluA and GluC are most active against linear beta-1,3 glucans, while GluB is most active against the insoluble beta-1,3 glucan substrate zymosan A. These data suggest that the contribution of beta-1,3-glucanases to the biocontrol activity of L. enzymogenes may be due to complementary activities of these enzymes in the hydrolysis of beta-1,3 glucans from fungal cell walls.  相似文献   

17.
T4 endonuclease V, which is involved in repair of ultraviolet-damaged DNA, has been purified 3600 fold from T4D-infected Escherichia coli. The enzyme shows optimal activity at pH 7.2 and does not require added divalent ions. Endonuclease V attacks both native and heat-denatured DNA provided that the DNA has been irradiated, and the enzyme activity is dependent on the dose of ultraviolet irradiation. The rate and the extent of the reaction are greater with irradiated native DNA although the Km values for the two types of DNA are the same (2.25 - 10(-5) M). The enzyme is readily inactivated by heat and is sensitive to p-chloromercuribenzoate. Endonuclease V-treated irradiated DNA is degraded by spleen phosphodiesterase only when the DNA has been treated with alkaline phosphatase, suggesting that the enzyme produces 5'-phosphoryl termini.  相似文献   

18.
19.
Thermolysin is a representative zinc metalloproteinase derived from Bacillus thermoproteolyticus and a target in protein engineering to understand the catalytic mechanism and thermostability. Extracellular production of thermolysin has been achieved in Bacillus, but not in Escherichia coli, although it is the most widely used as a host for the production of recombinant proteins. In this study, we expressed thermolysin as a single polypeptide pre-proenzyme in E. coli under the original promoter sequences in the npr gene, the gene from B. thermoproteolyticus, which encodes thermolysin. Active mature thermolysin (34.6 kDa) was secreted into the culture medium. The recombinant thermolysin was purified to homogeneity by sequential column chromatography procedures of the supernatant with hydrophobic-interaction chromatography followed by affinity chromatography. The purified recombinant product is indistinguishable from natural thermolysin from B. thermoproteolyticus as assessed by hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and N-carbobenzoxy-L-asparatyl-L-phenylalanine methyl ester. The results demonstrate that our expression system should be useful for structural and functional analysis of thermolysin.  相似文献   

20.
The major AP endonuclease from Chlamydomonas reinhardi has been partially purified and characterized. The enzyme has a molecular weight of about 38 000 as measured by molecular sieving. There is an absolute requirement for a divalent cation, with magnesium being better than manganese. The activity is stimulated by dithiothreitol and Triton X-100. The activity is sensitive to ionic strength, as 50 mM NaCl or KCl results in 70% inhibition. The enzyme is specific for apurinic and apyrimidinic (AP) sites and does not cleave DNA that has been damaged by ultraviolet light, methyl methanesulfonate, osmium tetroxide or sodium bisulfite. There is no deficiency in the AP endonuclease activity in extracts prepared from two mutants of Chlamydomonas that are sensitive to both ultraviolet light and methyl methanesulfonate. There was no evidence for induction of AP endonuclease after exposure of the cells to methyl methanesulfonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号