首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA polymerases of cyanobacteria contain a novel core subunit, gamma, which is absent from the RNA polymerases of other eubacteria. The genes encoding the three largest subunits of RNA polymerase, including gamma, have been isolated from the cyanobacterium Anabaena sp. strain PCC 7120. The genes are linked in the order rpoB, rpoC1, rpoC2 and encode the beta, gamma, and beta' subunits, respectively. These genes are analogous to the rpoBC operon of Escherichia coli, but the functions of rpoC have been split in Anabaena between two genes, rpoC1 and rpoC2. The DNA sequence of the rpoC1 gene was determined and shows that the gamma subunit corresponds to the amino-terminal half of the E. coli beta' subunit. The gamma protein contains several conserved domains found in the largest subunits of all bacterial and eukaryotic RNA polymerases, including a potential zinc finger motif. The spliced rpoC1 gene from spinach chloroplast DNA was expressed in E. coli and shown to encode a protein immunologically related to Anabaena gamma. The similarities in the RNA polymerase gene products and gene organizations between cyanobacteria and chloroplasts support the cyanobacterial origin of chloroplasts and a divergent evolutionary pathway among eubacteria.  相似文献   

3.
4.
Sequence analysis of a 12,400 base-pair region of the spinach chloroplast genome indicates the presence of three genes encoding subunits of the chloroplast RNA polymerase. These genes are analogous to the rpoBC operon of Escherichia coli, with some significant differences. The first gene, termed rpoB, encodes a 121,000 Mr homologue of the bacterial beta subunit. The second and third genes, termed rpoC1 and rpoC2, encode 78,000 and 154,000 Mr proteins homologous to the N and C-terminal portions, respectively, of the bacterial beta' subunit. RNA mapping analysis indicates that the three genes are cotranscribed, and that a single intron occurs in the rpoC1 gene. No splicing occurs within the rpoC2 gene or between rpoC1 and rpoC2. Furthermore, the data indicate the possibility of an alternative splice acceptor site for the rpoC1 intron that would give rise to a 71,000 Mr gene product. Thus, with the inclusion of the alpha subunit encoded by rpoA at a separate locus, the chloroplast genome is predicted to encode four subunits (respectively called alpha, beta, beta', beta") equivalent to the three subunits of the core enzyme of the E. coli RNA polymerase.  相似文献   

5.
6.
An Escherichia coli strain carrying an amber mutation (UAG) in rpoC, the gene encoding the beta prime subunit of RNA polymerase, was isolated after mutagenesis with nitrosoguanidine. The mutation was moved into an unmutagenized strain carrying the supD43,74 allele, which encodes a temperature-sensitive su1 amber suppressor, and sue alleles, which enhance the efficiency of the suppressor. In this background, beta prime is not synthesized at high temperature. Suppression of the mutation by the non-temperature-sensitive amber suppressor su1+ yields a protein which is functional at all temperatures examined (30, 37, and 42 degrees C).  相似文献   

7.
8.
Escherichia coli 397c is temperature sensitive for growth at 43.5 degrees C and unable to plate bacteriophage P2 at 33 degrees C. The mutation conferring these phenotypes was mapped to the rpoC gene. RNA synthesis is temperature sensitive in the mutant strain, and the beta' subunit of RNA polymerase isolated from this strain exhibits increased electrophoretic mobility. DNA sequence analysis revealed that the mutation is a deletion of 16 bp, resulting in a frameshift that leads to truncation of the beta' subunit at the carboxy terminus.  相似文献   

9.
R F Troxler  F Zhang  J Hu    L Bogorad 《Plant physiology》1994,104(2):753-759
Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae.  相似文献   

10.
11.
Subunit assembly and metabolic stability of E. coli RNA polymerase   总被引:1,自引:0,他引:1  
Immunological cross-reaction was employed for identification of proteolytic fragments of E. coli RNA polymerase generated both in vitro and in vivo. Several species of partially denatured but assembled RNA polymerase were isolated, which were composed of fragments of the two large subunits, beta and beta', and the two small and intact subunits, alpha and sigma. Comparison of the rate and pathway of proteolytic cleavage in vitro of unassembled subunits, subassemblies, and intact enzymes indicated that the susceptibility of RNA polymerase subunits to proteolytic degradation was dependent on the assembly state. Using this method, degradation in vivo was found for some, but not all, of the amber fragments of beta subunit in merodiploid cells carrying both wild-type and mutant rpoB genes. Although the RNA polymerase is a metabolically stable component in exponentially growing cells of E. coli, degradation of the full-sized subunits was found in two cases, i.e., several temperature-sensitive E. coli mutants with a defect in the assembly of RNA polymerase and the stationary-phase cells of a wild-type E. coli. The in vivo degradation of RNA polymerase was indicated to be initiated by alteration of the enzyme structure.  相似文献   

12.
A novel type of E. coli mutants with increased chromosomal copy number   总被引:9,自引:0,他引:9  
We have isolated E. coli mutants which can grow at 30 degrees C but not at 42 degrees C and are able to harbor the oriC plasmid (minichromosome) at a higher copy number than the parental wild-type strain at the permissive temperature. The mutants were found to contain higher amounts of chromosomal DNA per mg protein than the wild-type, whether or not they harbor the plasmid. Experimental results suggest that the higher amount of chromosomal DNA is due to a higher copy number of chromosomes and not to a larger amount of DNA per chromosome. These properties in each of the mutants are caused by a single mutation at the rpoB or rpoC gene that code for the beta or beta' subunit of RNA polymerase, respectively. The mutations are thought to affect the regulation of replication of oriC-bearing replicons, that is, the E. coli chromosome and oriC plasmids, but not the miniF plasmid.  相似文献   

13.
The genes coding for the beta (rpoB) and beta' (rpoC) subunits of RNA polymerase are fused in the gastric pathogen Helicobacter pylori but separate in other taxonomic groups. To better understand how the unique fused structure evolved, we determined DNA sequences at and around the rpoB-rpoC junction in 10 gastric and nongastric species of Helicobacter and in members of the related genera Wolinella, Arcobacter, Sulfurospirillum, and Campylobacter. We found the fusion to be specific to Helicobacter and Wolinella genera; rpoB and rpoC overlap in the other genera. The fusion may have arisen by a frameshift mutation at the site of rpoB and rpoC overlap. Loss of good Shine-Dalgarno sequences might then have fixed the fusion in the Helicobacteraceae, even if fusion itself did not confer a selective advantage.  相似文献   

14.
15.
16.
17.
The genes encoding the beta- and beta'-subunits of RNA polymerase (rpoB and rpoC respectively) are fused as one continuous open reading frame in Helicobacter pylori and in other members of this genus, but are separate in other bacterial taxonomic groups, including the closely related genus Campylobacter. To test whether this beta-beta' tethering is essential, we used polymerase chain reaction-based cloning to separate the rpoB and rpoC moieties of the H. pylori rpoB-rpoC fusion gene with a non-polar chloramphenicol resistance cassette containing a new translational start, and introduced this construct into H. pylori by electro-transformation. H. pylori containing these separated rpoB and rpoC genes in place of the native fusion gene produced non-tethered beta and beta' RNAP subunits, grew well in culture and colonized and proliferated well in conventional C57BL/6 mice. Thus, the extraordinary beta-beta' tethering is not essential for H. pylori viability and gastric colonization.  相似文献   

18.
19.
Escherichia coli K-12 mutants that are resistant to bacteriophage chi, defective in motility, and unable to grow at high temperature (42 degrees C) were isolated from among those selected for rifampin resistance at low temperature (30 degrees C) after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Genetic analysis of one such mutant indicated the presence of two mutations that probably affect the beta subunit of ribonucleic acid (RNA) polymerase: one (rif) causing rifampin resistance and the other (Ts-74) conferring resistance to phage chi (and loss of motility) and temperature sensitivity for growth. Observations with an electron microscope revealed that the number of flagella per mutant cell was significantly reduced, suggesting that the Ts-74 mutation somehow affected flagella formation at the permissive temperature. When a mutant culture was transferred from 30 to 42 degrees C, deoxyribonucleic acid synthesis accelerated normally, but RNA or protein synthesis was enhanced relatively little. The rate of synthesis of beta and beta' subunits of RNA polymerase was low even at 30 degrees C and was further reduced at 42 degrees C, in contrast to the parental wild-type strain. Expression of the lactose and other sugar fermentation operons, as well as lysogenization with phage lambda, occurred normally at 30 degrees C, suggesting that the mutation does not cause general shut-off of gene expression regulated by cyclic adenosine 3',5'-monophosphate.  相似文献   

20.
The level of ppGpp and rates of synthesis of stable RNA, ribosomal protein, and the beta and beta' subunits of RNA polymerase were measured following a nutritional shiftup in Escherichia coli strains, NF 929 (spoT+) and NF 930 (spoT-). In the spoT+ strain, ppGpp levels decreased 50% within 2 min following shiftup, and the rates of synthesis of stable RNA, ribosomal proteins, and the beta and beta' subunits of RNA polymerase increased with little or no lag. In contrast, in the spoT- strain, ppGpp levels transiently increased 40% during the first 6 min following shiftup. An inhibition in the rate of stable RNA synthesis and a delay in the increased synthesis of ribosomal proteins and beta and beta' subunits occurred concurrently with the transient increase in ppGpp. In addition, the DNA-dependent synthesis in vitro of the beta and beta' subunits of RNA polymerase was inhibited by physiological levels of ppGpp. Because of the timing and magnitude of the changes in ppGpp levels in the spoT- strain versus the timing when the new rates of stable RNA, ribosomal protein, and beta and beta' subunits synthesis are reached, it is concluded that ppGpp is not the sole element regulating the expression of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号