首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated target-derived smooth muscle nerve growth factor (NGF) and resultant neurogenic plasticity are associated with both hypertension and hyperactive voiding in spontaneously hypertensive rats (SHRs: hypertensive, behaviorally hyperactive). In culture, vascular (VSMCs) and bladder (BSMCs) smooth muscle cells derived from SHRs secrete higher levels of NGF, proliferate more rapidly, and achieve higher density at confluence than do control Wistar-Kyoto (WKY) cells. To elucidate growth-related contributions to the elevated tissue NGF observed in SHRs, we examined vascular VSMC and BSMC NGF secretion in two inbred cell lines (WKHTs, hypertensive; WKHAs, hyperactive) derived from SHRs and WKYs to assess the phenotypic association of altered NGF metabolism with either hypertension or behavioral hyperactivity. Cell density, rather than growth rates, was the most important factor with respect to NGF secretion. VSMC density varied such that WKHT=SHR>WKY= WKHA, higher VSMC density being associated with higher NGF output. However, in BSMC cultures, NGF output was the lowest in high density cell lines, with WKHT>SHR>WKY>WKHA. SHR BSMCs had the second highest cell density and NGF secretion level. Elevated packing density, presumably because of a lack of contact inhibition, co-segregated with the hypertensive phenotype in both VSMCs and BSMCs. Thus, dysfunctional smooth muscle growth characteristics may contribute to the augmented vascular and bladder NGF content associated with high blood pressure and hyperactive voiding in SHRs.  相似文献   

2.
3.
Bladder and vascular smooth muscle cells cultured from four rat strains (WKY, SHR, WKHA, WKHT) differing in rates of nerve growth factor (NGF) production were used to determine whether a relationship exists between intracellular calcium and NGF secretion. Basal cytosolic calcium was related to basal NGF secretion rates in bladder and vascular smooth muscle cells from all four strains with the exception of WKHT bladder muscle cells. Thrombin is a calcium-mobilizing agent and increases NGF production from vascular but not bladder smooth muscle cells. Strain differences were found in the magnitude of the calcium peak induced by thrombin in vascular smooth muscle cells, but these differences did not correlate with NGF secretion. Thrombin caused a calcium response in bladder smooth muscle cells without influencing NGF production. Quenching the calcium transient with a calcium chelator had no effect on thrombin-inducted NGF secretion rates in vascular smooth muscle cells. Thus, basal intracellular calcium may establish a set point for NGF secretion from smooth muscle. In addition, transient elevations in cytosolic calcium were unrelated to the induction of NGF output.  相似文献   

4.
Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar‐Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de‐endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin β1‐ and bone morphogenetic protein 1 (BMP1)‐mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC‐induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin β1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.  相似文献   

5.
Mechanicalstretch has been implicated in phenotypic changes as an adaptiveresponse to stretch stress physically loaded in bladder smooth musclecells (BSMCs). To investigate stretch-induced signaling, we examinedthe mitogen-activated protein kinase (MAPK) family using rat primaryBSMCs. When BSMCs were subjected to sustained mechanical stretch usingcollagen-coated silicon membranes, activation of c-JunNH2-terminal kinase (JNK) was most relevant among three subsets of MAPK family members: the activity was elevated from 5 minafter stretch and peaked at 10 min with an 11-fold increase. Activationof p38 was weak compared with that of JNK, and ERK was notactivated at all. JNK activation by mechanical stretch was totallydependent on extracellular Ca2+ and inhibited byGd3+, a blocker of stretch-activated (SA) ion channels.Nifedipine and verapamil, inhibitors for voltage-dependentCa2+ channels, had no effect on this JNK activation.Moreover, none of the inhibitors pertussis toxin, genistein,wortmannin, or calphostin C affected stretch-induced JNK activation,indicating that G protein-coupled and tyrosine kinase receptors areunlikely to be involved in this JNK activation. On the other hand, W-7,a calmodulin inhibitor, and cyclosporin A, a calcineurin inhibitor,prevented JNK activation by stretch. These results suggest a novelpathway for stretch-induced activation of JNK in BSMCs: mechanicalstretch evokes Ca2+ influx via Gd3+-sensitiveSA Ca2+ channels, resulting in JNK activation underregulation in part by calmodulin and calcineurin.

  相似文献   

6.
《Life sciences》1993,53(22):PL371-PL376
The role of protein tyrosine kinases (PTKs) in vascular smooth muscle (VSM) contraction was examined in spontaneously hypertensive rats (SHRs). Aorta from SHRs was hyperresponsive to PTK-mediated contraction relative to normotensive Wistar-Kyoto rats (WKYs). Aorta from SHR was also hyporesponsive to vasorelaxation by tyrphostin, a selective inhibitor of PTKs. Further, we found alterations in PTK activity in aorta from SHRs. PDGF stimulated PTK activity to a greater extent in the SHR. Tyrphostin inhibited PDGF-induced PTK stimulation in both strains, however, activity returned to basal levels in the WKY only. The results suggest that PTKs may be involved in VSM contraction and in the development of hypertension.  相似文献   

7.
8.
Zhu JH  Liu Z  Huang ZY  Li S 《生理学报》2005,57(5):587-592
本文研究血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)对自发性高血压大鼠(spontaneously hypertensive rat,SHR)和Wistar- Kyoto(WKY)大鼠血管平滑肌细胞(vascular smooth muscle cells.VSMCs)细胞外信号调节激酶(extracellular signal-regulated pro- tein kinases,ERKs)信号途径的影响。体外培养SHR和WKY大鼠的VSMCs,先在培养基中加入终浓度为1×105mmol/L 的缬沙坦或1×105mmol/L的PD98059或不加药物,再给予1×107mmol/L的Ang Ⅱ刺激24 h后收集细胞,以无血清培养基 培养的VSMCs作对照。用免疫沉淀法测定ERK活性;用Western-blot方法检测总ERK(total ERK,t-ERK)、磷酸化ERK (phosphorylated-ERK,p-ERK)及丝裂素活化蛋白激酶磷酸酶-1(mitogen-activated protem kinases phosphatase-1,MKP-1)水 平;用RT-PCR法半定量测定MKP-1 mRNA的含量。结果显示:(1)SHR和WKY大鼠Ang Ⅱ刺激组VSMCs中ERK活 性、p-ERK、MKP-1及MKP-1 mRNA水平均明显高于对照组(P<0.05);SHR和WKY大鼠Ang Ⅱ+缬沙坦组和Ang Ⅱ +PD98059组的上述指标与对照组比较均无显著性差异。(2)SHR大鼠VSMCs中ERK活性、P-ERK、MKP-1及MKP-1 mRNA均显著高于相同干预的WKY大鼠(P<0.01)。(3)SHR和WKY大鼠之间以及对照组、Ang Ⅱ刺激组、Ang Ⅱ+缬沙 坦组和Ang Ⅱ+PD98059组间VSMCs中t-ERK水平均无显著性差异。以上结果表明,Ang Ⅱ可能主要通过其1型(Ang Ⅱ type 1,AT)受体激活SHR和WKY大鼠VSMCs中ERK途径,增加ERK活性和p-ERK蛋白水平,继而引起MKP-1及 MKP-1 mRNA水平升高。  相似文献   

9.
10.
L-苯丙氨酸与血管平滑肌细胞增殖   总被引:3,自引:0,他引:3  
Gao PJ  Zhu DL  Zhan YM  Stepien O  Marche P  Zhao GS 《生理学报》1998,50(4):401-408
本文用氚标胸腺嘧啶核苷掺入DNA合成法测定自发性高血压大鼠(SHR)与正常对照鼠的培养主动脉血管平滑肌细胞(VSMC)增殖,观察L-苯丙氨酸对细胞增殖、细胞生长及原癌基因c-fos、c-myc表达的影响。结果显示:(1)L-苯丙氨酸剂量依赖性地抑制血清、碱性成纤维细胞生长因子及凝血酶诱导的DNA合成;(2)L-苯丙氨酸剂量依赖性地抑制细胞对血清的增殖反应;(3)L-苯丙氨酸抑制血清诱导的c-fos  相似文献   

11.
The connective tissue growth factor known as CCN2 is an inducible, profibrotic molecule that becomes aberrantly expressed in mechanical overload-bearing tissues. In this study, we found that CCN2 gene expression is rapidly induced in cyclically stretched bladder smooth muscle cells (SMCs) in vitro and in the detrusor muscle of a mechanically overloaded bladder in a rat model of experimental urethral obstruction. The activity of CCN2 promoter constructs, transiently transfected into cultured SMCs, was increased (up to 6-fold) by continuous cyclic stretching. Molecular analyses of the CCN2 promoter by serial construct deletions, cis-element mutagenesis, and electrophoretic mobility shift assays revealed that a highly conserved NF-kappaB binding site located within the CCN2 proximal promoter region is responsible for the activation of the promoter by stretch. Chromatin immunoprecipitation assays showed that NF-kappaB binds to the endogenous CCN2 promoter in both stretched cells and mechanically overloaded bladder tissues. Furthermore, stretch-dependent CCN2 promoter activity was significantly reduced upon inhibition of either phosphatidylinositol 3-kinase, p38 stress-activated kinase, or RhoA GTPase and was completely abolished upon inhibition of actin polymerization. Concordantly, actin polymerization was increased in either mechanically stretched cells or overloaded bladder tissues. Incubation of cultured SMCs with a cell-penetrating peptide containing the N-terminal sequence, Ac-EEED, of smooth muscle alpha-actin, altered both actin cytoskeleton organization and stretch-mediated nuclear relocation of NF-kappaB, and subsequently, it reduced CCN2 promoter activity. Thus, mechanical stretch-induced changes in actin dynamics mediate NF-kappaB activation and induce CCN2 gene expression, which probably initiates the fibrotic reactions observed in mechanical overload-associated pathologies.  相似文献   

12.
Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease.  相似文献   

13.
Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.  相似文献   

14.
Jin J  Zhu SJ  Zhu ZM  Yang YJ  Ding G 《生理学报》2002,54(2):145-148
为明确血小板源生长因子 AA(plateletderivedgrowthfactor AA ,PDGF AA)及PDGF α受体在自发性高血压大鼠 (spontaneouslyhypertensionrats,SHR)血管平滑肌细胞 (vascularsmoothmusclecells,VSMCs)增殖中的作用 ,采用Westernblot、[3 H]TdR及 [3 H]Leu掺入率等方法 ,观察在SHR和WKY大鼠VSMC中PDGF AA及PDGF受体表达的差异 ;在PDGF AA刺激下VSMC增殖和肥大反应的变化。结果显示 ,SHR VSMC中PDGF AA、PDGF α受体蛋白表达明显高于WKY VSMC(P <0 0 1) ,而PDGF β受体蛋白表达在SHR VSMC与WKY VSMC无明显差异 ;在不同浓度PDGF AA刺激下 ,增殖细胞核抗原 (PCNA)及3 H掺入率在SHR VSMC明显增强且呈剂量依赖性增加 (P <0 0 1)。本研究表明PDGF A链及其α受体的自泌性增高 ,可能是导致SHR VSMC异常增殖和肥大 ,并导致血管构型变化的重要原因之一  相似文献   

15.
Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia.  相似文献   

16.
Mechanical stress contributes to vascular disease related to hypertension. Activation of ERK is key to mediating cellular proliferation and vascular remodeling in response to stretch stress. However, the mechanism by which stretch mediates ERK activation in the vascular tissue is still unclear. Caveolin, a major component of a flasklike invaginated caveolae, acts as an adaptor protein for an integrin-mediated signaling pathway. We found that cyclic stretch transiently induced translocation of caveolin from caveolae to noncaveolar membrane sites in vascular smooth muscle cells (VSMCs). This translocation of caveolin was determined by detergent solubility, sucrose gradient fractionation, and immunocytochemistry. Cyclic stretch induced ERK activation; the activity peaked at 5 min (the early phase), decreased gradually, but persisted up to 120 min (the late phase). Disruption of caveolae by methyl-beta-cyclodextrin, decreasing the caveolar caveolin and accumulating the noncaveolar caveolin, enhanced ERK activation in both the early and late phases. When endogenous caveolins were downregulated, however, the late-phase ERK activation was subsided completely. Caveolin, which was translocated to noncaveolar sites in response to stretch, is associated with beta1-integrins as well as with Fyn and Shc, components required for ERK activation. Taken together, caveolin in caveolae may keep ERK inactive, but when caveolin is translocated to noncaveolar sites in response to stretch stress, caveolin mediates stretch-induced ERK activation through an association with beta1-integrins/Fyn/Shc. We suggest that stretch-induced translocation of caveolin to noncaveolar sites plays an important role in mediating stretch-induced ERK activation in VSMCs.  相似文献   

17.
Phenotypic modulation of smooth muscle is associated with various pathological conditions, including bladder dysfunction. Cytoskeletal dynamics modulate the cell phenotype and were recently shown to be involved in regulation of inducible nitric oxide synthase (iNOS). We tested the hypothesis that the cell differentiation status affects iNOS expression, and that iNOS is preferentially expressed in immature dedifferentiated bladder smooth muscle cells (BSMC). Isolated at BSMC were put into different stages of differentiation by serum deprivation on laminin-coated plates in the presence of IGF-I and by interaction with Rho signaling and actin polymerization. iNOS and smooth muscle-myosin heavy chain (SM-MHC) protein expression were investigated with Western blot analysis. Our results showed iNOS protein in BSMC exposed to interleukin-1 beta (2 ng/ml) + TNF-alpha (50 ng/ml). Growth of BSMC in serum-free medium on laminin in the presence of IGF-I increased SM-MHC expression, whereas cytokine-induced iNOS was inhibited. Disruption of F-actin with latrunculin B (0.5 microM) potentiated iNOS expression and decreased SM-MHC expression. Rho inhibition with C3 (2.5 microg/ml) increased iNOS expression, whereas SM-MHC expression was slightly decreased. Rho-kinase inhibition with Y-27632 (10 microM) mediated a decrease in iNOS and a slight increase in SM-MHC expression. In conclusion, the capacity of BSMC to express iNOS was negatively correlated to differentiation status measured as SM-MHC expression. Actin cytoskeletal dynamics and Rho signaling are involved in regulation of cytokine-induced iNOS expression in BSMC. Phenotypic changes and impairment in actin cytoskeleton formation may potentiate cytokine activation and in turn increase nitric oxide production in the bladder during disease.  相似文献   

18.
Hyperinsulinemia is a risk factor in atherosclerosis formation that it stimulated vascular smooth muscle cells (VSMCs) proliferation and migration. To understand the underlying molecular mechanism involved in the processes of cellular response to insulin, VSMCs from Wistar-Kyoto rat (WKY) and spontaneous hypertensive rat (SHR) were isolated and cultured, and its proteome was comparatively analyzed with normal control by two-dimensional gel electrophoresis (2-DE). Results showed that the proliferation of VSMCs from SHR be more sensitive to insulin stimulation than that VSMCs from WKY. The detectable spots ranged from 537 to 608 on the gels in VSMCs of SHR, and 413 ± 31 spots in VSMCs of WKY. The different expressed protein spots in VSMCs of SHR were then isolated and measured by matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 18 spots showed a sharp clear spectrum, and 13 spots matched with the known proteins from database. These proteins were mainly involved in cytoskeleton, glycometabolism, and post-translational processes. Among these proteins, OPN and matrix gla protein were up-regulated expression proteins, while α-SM actin was down-regulated. Furthermore, these preliminarily identified proteins confirmed by RT-PCR and western blotting analysis were coincident with the changes in 2-DE check. In addition, the cytoskeleton changes and migration rate of VSMCs from SHR treated by insulin increased significantly. The results showed that insulin plays a crucial role in activating proliferation and migration of VSMCs, by regulating the phenotype switch of VSMCs.  相似文献   

19.
The differentiation of vascular smooth muscle cells (VSMCs), which are exposed to mechanical stretch in vivo, plays an important role in vascular remodeling during hypertension. Here, we demonstrated the mechanobiological roles of large conductance calcium and voltage-activated potassium (BK) channels in this process. In comparison with 5% stretch (physiological), 15% stretch (pathological) induced the de-differentiation of VSMCs, resulting in significantly decreased expressions of VSMC markers, i.e., α-actin, calponin and SM22. The activity of BK channels, assessed by patch clamp recording, was significantly increased by 15% stretch and was accompanied by an increased alternative splicing of BK channel α-subunit at the stress axis-regulated exons (STREX). Furthermore, transfection of whole BK or STREX-deleted BK plasmids revealed that STREX was important for BK channels to sense mechanical stretch. Using thapsigargin (TG) which induces endoplasmic reticulum (ER) stress, and xbp1-targeted siRNA transfection which blocks ER stress, the results revealed that ER stress was contribute to stretch-induced alternative splicing of STREX. Our results suggested that during hypertension, pathological stretch may induce the ER stress in VSMCs, which affects the alternative splicing and activity of BK channels, and subsequently modulates VSMC differentiation.  相似文献   

20.
In hypertension studies, anti-inflammatory cytokine interleukin-10 (IL-10) has been shown to prevent angiotensin II (Ang II)-induced vasoconstriction and regulate vascular function by down-regulating pro-inflammatory cytokine and superoxide production in vascular cells. However, little is known about the mechanism behind the down-regulatory effect of IL-10 on Ang II-induced hypertensive mediators. In this study, we demonstrated the effects of IL-10 on expression of dimethylarginine dimethylaminohydrolase (DDAH)-1, a regulator of NO bioavailability, as well as the down-regulatory mechanism of action of IL-10 in relation to Ang II-induced hypertensive mediator expression and cell proliferation in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). IL-10 increased DDAH-1 but not DDAH-2 expression and increased DDAH activity. Additionally, IL-10 attenuated Ang II-induced DDAH-1 inhibition in SHR VSMCs. Increased DDAH activity due to IL-10 was mediated mainly through Ang II subtype II receptor (AT2 R) and AMP-activated protein kinase (AMPK) activation. DDAH-1 induced by IL-10 partially mediated the inhibitory action of IL-10 on Ang II-induced 12-lipoxygenase (LO) and endothelin (ET)-1 expression in SHR VSMCs. In addition, the inhibitory effect of IL-10 on proliferation of Ang II-induced VSMCs was mediated partially via DDAH-1 activity. These results suggest that DDAH-1 plays a potentially important role in the anti-hypertensive activity of IL-10 during Ang II-induced hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号