首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin D2 11-ketoreductase activity of bovine liver was purified 340-fold to apparent homogeneity. The purified enzyme was a monomeric protein with a molecular weight of about 36 kDa, and had a broad substrate specificity for porstaglandins D1, D2, D3, and H2, and various carbonyl compounds (e.g., phenanthrenequinone and nitrobenzaldehyde, etc.). Prostaglandin D2 was reduced to 9 alpha,11 beta-prostaglandin F2 and prostaglandin H2 to prostaglandin F2 alpha with NADPH as a cofactor. Phenanthrenequinone competitively inhibited the reduction of prostaglandin D2, while it did not inhibit that of prostaglandin H2. Moreover, chloride ion stimulated the reduction of prostaglandin D2 and carbonyl compounds, while it had no effect on that of prostaglandin H2. Besides, the enzyme was inhibited by flavonoids (e.g., quercetin) that inhibit carbonyl reductase, but was not inhibited by barbital and sorbinil, which are the inhibitors of aldehyde and aldose reductases, respectively. These results indicate that the bovine liver enzyme has two different active sites, i.e., one for prostaglandin D2 and carbonyl compounds and the other for prostaglandin H2, and appears to be a kind of carbonyl reductase like bovine lung prostaglandin F synthase (Watanabe, K., Yoshida, R., Shimizu, T., and Hayaishi, O., 1985, J. Biol. Chem. 260, 7035-7041). However, the bovine liver enzyme was different from prostaglandin F synthase of bovine lung with regard to the Km value for prostaglandin D2 (10 microM for the liver enzyme and 120 microM for the lung enzyme), the sensitivity to chloride ion (threefold greater activation for the liver enzyme) and the inhibition by CuSO4 and HgCl2 (two orders of magnitude more resistant in the case of the liver enzyme). These results suggest that the bovine liver enzyme is a subtype of bovine lung prostaglandin F synthase.  相似文献   

2.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

3.
Using the cDNA of bovine lung prostaglandin F synthase (EC 1.1.1.2) as a probe, we isolated a clone from a bovine liver cDNA library which differed in only eleven nucleotides from the probe. The corresponding protein contained three amino acid substitutions, including a leucine residue which is conserved throughout all aldo-keto reductases. We inserted the liver cDNA into expression vector pUC19 and expressed the recombinant liver enzyme in E.coli. The purified liver enzyme reduced prostaglandin H2 as well as prostaglandin D2 and various carbonyl compounds. The high relative activity against prostaglandin H2 in combination with a high Km value for prostaglandin D2 identified this liver enzyme as a lung type prostaglandin F synthase. However, the binding constant for NADPH of the liver enzyme was 3.5 fold higher than that of lung prostaglandin F synthase.  相似文献   

4.
9 alpha,11 beta-prostaglandin F2 was formed from prostaglandin D2 by its 11-ketoreductases in 100,000 x g supernatants of various bovine tissues in the presence of an NADPH-generating system. The reductase activities were high in liver (51.09 nmol/h/mg of protein), lung (24.99), and spleen (14.20); moderate in heart and pancreas (3.09-3.61); weak in stomach, intestine, colon, kidney, uterus, adrenal gland, and thymus (0.11-2.63); and undetectable in brain, retina, carotid artery, and blood (less than 0.10). No formation of prostaglandin F2 alpha from prostaglandin D2 was detected in all tissues. In immunotitration analyses with a polyclonal antibody specific for prostaglandin F synthetase, the reductase activities in lung and spleen showed identical titration curves to that of the purified synthetase and decreased to less than 15% of the initial activity under the condition of antibody excess. Prostaglandin F synthetase-immunoreactive protein in these two tissues showed peptide fingerprints identical to that of the purified enzyme after partial digestion with Staphylococcus aureus V8 protease. The antibody was partially cross-reactive to the reductase in liver (about 20% of that to the synthetase) but not to the reductase(s) in other tissues. The Km value for prostaglandin D2 of the reductase activity was the same in lung and spleen as that of the purified prostaglandin F synthetase (120 microM) but differed in liver (6 microM), heart, and pancreas (15 microM). The predominant distribution of prostaglandin F synthetase in lung and spleen was confirmed by radioimmunoassay (2.8 and 1.0 micrograms/mg protein, respectively) and Northern blot analyses. In immunoperoxidase staining, this enzyme was localized in alveolar interstitial cells and nonciliated epithelial cells in lung, histiocytes and/or dendritic cells in spleen, and a few interstitial cells in kidney and adrenal cortex.  相似文献   

5.
The primary structure of prostaglandin (PG) F synthetase from bovine lung shows 62% similarity with that of human liver aldehyde reductase (EC 1.1.1.2) (Watanabe, K., Fujii, Y., Nakayama, K., Ohkubo, H., Kuramitsu, S., Kagamiyama, H., Nakanishi, S., and Hayaishi, O. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 11-15). We therefore purified human liver aldehyde reductase to homogeneity and compared the immunological and catalytic properties of aldehyde reductase and PGF synthetase. Although both enzymes belong to a group of aldoketoreductases and their molecular weights are essentially identical, aldehyde reductase had no cross-reactivity to anti-PGF synthetase antiserum. Furthermore, there was a difference in the substrate specificity for reduction of PGs between the two enzymes. Aldehyde reductase catalyzed the reduction of PGJ2, delta 12-PGJ2, PGH2, or PGA2, but not that of PGB2, PGD2, or PGE2, whereas PGF synthetase reduced PGD2. The optimum pH, Km value for PGH2, and the turnover number were 6.5, 100 microM, and 3.1 min-1, respectively. The PGH2 9,11-endoperoxide reductase activity of aldehyde reductase was not affected in the presence of a substrate such as p-nitrobenzaldehyde, DL-glyceraldehyde, or 9,10-phenanthrenequinone, suggesting that PGH2 9,11-endoperoxide and other substrates are reduced at different active site(s). The reaction product formed from PGH2 by this enzyme was identified as PGF2 alpha by gas chromatography/mass spectrometry. These results suggest that aldehyde reductase is not exactly identical to PGF synthetase in terms of its immunological property and substrate specificity for PGs, but that this enzyme is also involved in the direct conversion of PGH2 to PGF2 alpha similar to PGF synthetase.  相似文献   

6.
Purification and characterization of rat brain prostaglandin D synthetase   总被引:6,自引:0,他引:6  
Prostaglandin D synthetase was purified 2,600-fold from rat brain to apparent homogeneity, as judged by polyacrylamide gel electrophoresis and ultracentrifugation. The purified enzyme was a monomeric protein with a molecular weight of 27,000 +/- 1,000. The pI value, sedimentation coefficient, and partial specific volume were 4.6, 4.1 s, and 0.73 ml/g, respectively. The enzyme was stable between pH 4 and 11 at the temperature lower than 25 degrees C and resistant to a heat treatment under alkaline conditions (pH 8-11). About 50% of the activity was detected after a heat treatment at 100 degrees C for 5 min at pH 10. However, the enzyme was readily inactivated by the isomerase reaction of prostaglandin H2 to prostaglandin D2. The enzyme required sulfhydryl compounds such as dithiothreitol, glutathione, beta-mercaptoethanol, cysteine, and cysteamine for the reaction, but stoichiometric oxidation of these sulfhydryl compounds was not observed. The optimum pH, Km value for prostaglandin H2, and the turnover number were 9.5, 14 microM, and 170 min-1, respectively. The antibody was raised against the purified enzyme in a rabbit, which showed only one positive band in immunoblotting after gel electrophoresis of crude extracts of the brain at the same position as that of the purified enzyme. More than 90% of the prostaglandin D synthetase activity in the brain was absorbed by an excess amount of the antibody, indicating that our preparation is a major component of the enzyme responsible for the biosynthesis of prostaglandin D2 in the brain.  相似文献   

7.
Prostaglandin 9-ketoreductase (PG-9-KR) was purified from pig kidney to homogeneity, as judged by SDS/PAGE using an improved procedure. The enzyme is pro-S stereoselective with regard to hydrogen transfer from NADPH with prostaglandin E2 as substrate and reduces its 9-keto group with approximately 90% stereoselectivity to form prostaglandin F2 alpha. Approximately 8% of the prostaglandin F formed has the beta-configuration. In addition to catalyzing the interconversion of prostaglandin E2 to F2 alpha, PG-9-KR also oxidizes prostaglandin E2, F2 alpha and D2 to their corresponding, biologically inactive, 15-keto metabolites. Incubation of PG-9-KR with prostaglandin F2 alpha and NAD+ leads to the preferential formation of 15-keto prostaglandin F2 alpha rather than prostaglandin E2. This suggests that the prostaglandin E2/prostaglandin F2 alpha ratio is not determined by the NADP+/NADPH redox couple. The enzyme also reduces various other carbonyl compounds (e.g. 9,10-phenanthrenequinone) with high efficiency. The catalytic properties measured for PG-9-KR suggest that its in vivo function is unlikely to be to catalyze formation of prostaglandin F2 alpha. The monomeric enzyme has a molecular mass of 32 kDa and exists as four isoforms, as judged by isoelectric focusing. PG-9-KR contains 1.9 mol Zn2+/mol enzyme and no other cofactors. Human kidney PG-9-KR was also purified to homogeneity. The human enzyme has a molecular mass of 34 kDa and also exists as four isoforms. Polyclonal antibodies raised against pig kidney PG-9-KR cross-react with human kidney PG-9-KR and also with human brain carbonyl reductase, as demonstrated by Western blot analysis. Sequence data of tryptic peptides from pig kidney PG-9-KR show greater than 90% identity with human placenta carbonyl reductase. From comparison of several properties (catalytical, structural and immunological properties), it is concluded that PG-9-KR and carbonyl reductase are identical enzymes.  相似文献   

8.
Substrate specificity of three prostaglandin dehydrogenases   总被引:3,自引:0,他引:3  
Studies on the substrate specificity, kcat/Km, and effect of inhibitors on the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase (9-ketoprostaglandin reductase) indicate that it is very similar to a human brain carbonyl reductase which also possesses 9-ketoprostaglandin reductase activity. These observations led to a comparison of three apparently homogeneous 15-hydroxyprostaglandin dehydrogenases with varying amounts of 9-ketoprostaglandin reductase activity: an NAD- and an NADP-linked enzyme from human placenta and an NADP-linked enzyme from rabbit kidney. All three enzymes are carbonyl reductases for certain non-prostaglandin compounds. The placental NAD-linked enzyme, which has no 9-ketoprostaglandin reductase activity, is the most specific of the three. Although it has carbonyl reductase activity, a comparison of the Km and kcat/Km for prostaglandin and non-prostaglandin substrates of this enzyme suggests that its most likely function is as a 15-hydroxyprostaglandin dehydrogenase. The results of similar comparisons imply that the other two enzymes may function as less specific carbonyl reductases.  相似文献   

9.
Mast cells contain spleen-type prostaglandin D synthetase   总被引:2,自引:0,他引:2  
Prostaglandin D synthetase activity in the cytosol (100,000 x g, 1-h supernatant) fraction of peritoneal mast cells of adult rats (105.0 nmol/min/mg protein) was the highest among such activities in various rat tissues and cells. As judged by the absolute requirement for glutathione for the reaction (Km = 300 microM), the Km value for prostaglandin H2 (200 microM), and insensitivity of the activity to 1 mM 1-chloro-2,4-dinitrobenzene, the enzyme in mast cells was similar to rat spleen prostaglandin D synthetase and differed from rat brain prostaglandin D synthetase or glutathione S-transferase, all of which catalyze the isomerase reaction from prostaglandin H2 to prostaglandin D2. In immunotitration analyses, the activity in mast cells showed a titration curve exactly identical with that of the purified spleen-type enzyme and almost completely absorbed by an excess amount of antibody against this enzyme, but it remained unchanged after incubation with antibodies against the brain-type enzyme and glutathione S-transferase isozymes thus far purified. In Western blot after two-dimensional electrophoresis of crude extracts of mast cells, a single immunoreactive spot was observed with antibody against the spleen-type enzyme at the same position as that of the purified enzyme (Mr = 26,000, pI = 5.2). Furthermore, the immunoreactive protein obtained from mast cells showed the same peptide fingerprints as those of the purified spleen-type enzyme, after partial digestion with Staphylococcus aureus V8 protease or trypsin. In immunoperoxidase staining, the immunoreactivity of the spleen-type enzyme was found in the cytosol of tissue mast cells in various organs such as thymus, intestine, stomach, and skin of adult rats. These findings indicate that prostaglandin D2 is produced by the spleen-type synthetase in mast cells of various tissues.  相似文献   

10.
The prostaglandin D synthetase system was isolated from rat brain. Prostaglandin endoperoxide synthetase solubilized from a microsomal fraction catalyzed the conversion of arachidonic acid to prostaglandin H2 in the presence of heme and tryptophan. Prostaglandin D synthetase (prostaglandin endoperoxidase-D isomerase) catalyzing the isomerization of prostaglandin H2 to prostaglandin D2 was found predominantly in a cytosol fraction and was purified to apparent homogeneity with a specific activity of 1.7 mumol/min/mg of protein at 24 degrees C. The enzyme also acted upon prostaglandin G2 and produced a compound presumed to be 15-hydroperoxy-prostaglandin D2. Glutathione was not required for the enzyme reaction, but the enzyme was stabilized by thiol compounds including glutathione. The enzyme was inhibited by p-chloromercuribenzoic acid in a reversible manner. The purified enzyme was essentially free of the glutathione S-transferase activity which was found in the cytosol of brain.  相似文献   

11.
The reduction of N5,N10-methylenetrahydromethanopterin (CH2 = H4MPT) to N5-methyltetrahydromethanopterin (CH3-H4MPT) is an intermediate step in methanogenesis from CO2 and H2. The reaction is catalyzed by CH2 = H4MPT reductase. The enzyme from Methanobacterium thermoautotrophicum (strain Marburg) was found to be specific for reduced coenzyme F420 as electron donor; neither NADH or NADPH nor reduced viologen dyes could substitute for the reduced 5-deazaflavin. The reductase was purified over 100-fold to apparent homogeneity. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band at the 36-kDa position. The apparent molecular mass of the native enzyme was determined by gel filtration to be in the order of 150 kDa. The purified enzyme was colourless. It did not contain flavin or iron. The ultraviolet visible spectrum was almost identical to that of albumin, suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentration at different constant concentrations of the second substrate yielded straight lines intersecting at one point on the abscissa to the left of the vertical axis. This intersecting pattern is characteristic of a ternary complex catalytic mechanism. The Km for CH2 = H4MPT and for the reduced coenzyme F420 were determined to be 0.3 mM and 3 microM, respectively. Vmax was 6000 mumol.min-1.mg protein-1 (kcat = 3600 s-1). The CH2 = H4MPT reductase was stable in the presence of air; at 4 C less than 10% activity was lost within 24 h.  相似文献   

12.
Biliverdin reductase was purified from pig spleen soluble fraction to a purity of more than 90% as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was a monomer protein with a molecular weight of about 34,000. Its isoelectric point was at 6.1-6.2. The enzyme was strictly specific to biliverdin and no other oxiodoreductase activities could be detected in the purified enzyme preparation. The purified enzyme could utilize both NADPH and NADH as electron donors for the reduction of biliverdin. However, there were considerable differences in the kinetic properties of the NADPH-dependent and the NADH-dependent biliverdin reductase activities: Km for NADPH was below 5 microM while that for NADH was 1.5-2 mM; the pH optimum of the reaction with NADPH was 8.5 whereas that of the reaction with NADH was 6.9; Km for biliverdin in the NADPH system was 0.3 microM whereas that in the NADH system was 1-2 microM. In addition, both the NADPH-dependent and NADH-dependent activities were inhibited by excess biliverdin, but this inhibition was far more pronounced in the NADPH system than in the NADH system. IX alpha-biliverdin was the most effective substrate among the four biliverdin isomers, and the dimethylester of IX alpha-biliverdin could not serve as a substrate. Biliverdin reductase was also purified about 300-fold from rat liver soluble fraction. The hepatic enzyme was also a monomer protein with a molecular weight of 34,000 and showed properties quite similar to those of the splenic enzyme as regards the biliverdin reductase reaction. The isoelectric point of the hepatic enzyme, however, was about 5.4. It was assumed that NADPH rather than NADH is the physiological electron donor in the intracellular reduction of IX alpha-biliverdin. The stimulatory effects of bovine and human serum albumins on the biliverdin reductase reactions were also examined.  相似文献   

13.
The oxidation of F420H2 (reduced coenzyme F420) is a key reaction in the final step of methanogenesis. This step is catalyzed in Methanolobus tindarius by the membrane-bound F420H2-dehydrogenase which was purified 31-fold to apparent homogeneity. The apparent molecular mass of the native enzyme was 120 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of five different subunits of apparent molecular masses of 45 kDa, 40 kDa, 22 kDa, 18 kDa and 17 kDa. The purified F420H2-dehydrogenase, which was yellowish, contained 16 +/- 2 mol iron and 16 +/- 3 mol acid-labile sulfur/mol enzyme. No flavin could be detected. The oxygen-stable enzyme catalyzed the oxidation of F420H2 (apparent Km = 5.4 microM) with methylviologen and metronidazole as electron acceptors at a specific rate of 13 mumol.min-1.mg-1 (kcat = 25.5 s-1). The isoelectric point was at pH 5.0. The temperature optimum was at 37 degrees C and the pH optimum at 6.8.  相似文献   

14.
Contractile interstitial cells (CIC), the major component of the alveolar septum of the bovine lung are enriched in prostaglandin (PG) F synthase (Fukui, M., Fujimoto, T., Watanabe, K., Endo, K., and Kuno, K. (1996) J. Histochem. Cytochem. 44, 251-257.). The enzyme catalyzes not only the reduction of PGD(2) and PGH(2) but also that of various carbonyl compounds (Watanabe, K., Yoshida, R., Shimizu, T., and Hayaishi, O. (1985) J. Biol. Chem. 260, 7035-7041). Here, we report that retinal (vitamin A-aldehyde) was reduced to retinol (vitamin A-alcohol) dose- and time-dependently by PGF synthase using NADPH as a cofactor. The Km value of PGF synthase for retinal was about 20 microM, a same order to that for PGH(2). The conversion of retinal to retinol was also observed in cultured CIC, as demonstrated by the greenish fluorescence characteristic of retinol. Thus, retinal might be one of the natural substrates for PGF synthase in vivo, and retinol synthesized from retinal in CIC may play physiological and pathological roles in the lungs.  相似文献   

15.
A bovine corpora luteal membrane glycoprotein which coelutes from multiple chromatographic procedures with bound tritiated prostaglandin F2a ([3H]PGF2 alpha) has been identified and purified to homogeneity. The properties of this molecule include: an apparent molecular mass by polyacrylamide gel electrophoresis (PAGE) of 135 kD; glycosylation which resists endoglycosidases D and H but is susceptible to cleavage by the exoglycosidase sialidase; binding of the molecule to Wheat Germ Agglutinin Sepharose but not to Concanavalin A Sepharose or Soybean Agglutinin Sepharose; migration on O'Farrell 2-D PAGE (pI 3-10) to the acidic side of the gel; binding to DEAE-Cellulose at pH 7.5 which can be displaced with NaCl at concentrations above approximately 100 mM; and, when solubilized with Triton X-100, binding to Phenyl-Sepharose or Octyl-Sepharose columns. Lastly, a rabbit polyclonal antibody against this [3H]PGF2 alpha binding protein has been made which allows both Western blotting of the 135 kD protein as well as immunohistochemical staining of ovarian tissue in a manner expected from previous binding studies. Problems associated with membrane solubilization of the receptor and receptor renaturation are discussed.  相似文献   

16.
The aim of the following study was to determine the activity and physico-chemical properties of prostaglandin E2 9-keto reductase from bovine placenta. Placental tissues obtained immediately after parturition were subjected to purification procedure consisting of homogenization, affinity chromatography, gel filtration and allowed to electrophoresis. The activity of enzyme was measured spectrophotometrically. The purification procedures receive 135-fold purified enzyme preparate of the molecular weight of 45 kDa with the following kinetic values: Michaelis constant for PGE2, 117 microM and max velocity 183 pmol/min. The activity of enzyme was also detected with 20 alpha-hydroxypregn-4en-3-one and with 9,10-phenanthrenquinone (Michaelis constant 22 microM and 6 microM, respectively). The determination of physico-chemical properties of prostaglandin E2 9-keto reductase, performed for the first time in bovine placenta, should aid the understanding of the metabolism of prostaglandins and their biological importance in physiological and pathological conditions in cattle.  相似文献   

17.
Rat spleen prostaglandin D synthetase (Christ-Hazelhof, E., and Nugteren, D. H. (1979) Biochim. Biophys. Acta 572, 43-51) is very similar to rat brain prostaglandin D synthetase (Urade, Y., Fujimoto, N., and Hayaishi O. (1985) J. Biol. Chem. 260, 12410-12415) as judged by their pI (4.7-5.2), Mr (26,000-27,000), and self-inactivation during the isomerase reaction from prostaglandin H2 to prostaglandin D2. However, the amino acid compositions of these two enzymes were quite different. Furthermore, the spleen enzyme was associated with the glutathione S-transferase activity, differing from the brain enzyme. The synthetase and transferase activities of the spleen enzyme showed almost identical pH and glutathione dependencies, the optimum pH = 8.0 and Km for glutathione = 300 microM. The Km values for prostaglandin H2 and 1-chloro-2,4-dinitrobenzene (a substrate for the transferase) were about 200 microM and 5 mM, respectively. The synthetase activity was dose-dependently inhibited by 1-chloro-2,4-dinitrobenzene (IC50: approximately 5 mM) and more strongly by nonsubstrate ligands, such as bilirubin and indocyanine green (IC50: 150 and 2 microM, respectively). Both the synthetase and transferase activities of the purified enzyme dose-dependently decreased and showed identical immunotitration curves by incubation with antibody against this enzyme, but remained unchanged when treated with antibody against the brain enzyme. The antibody specific for the spleen enzyme absorbed almost all of the synthetase activity and about 10% of the transferase activity in the spleen, but not the transferase activity in the liver, heart, and testis. These results show that the two types of prostaglandin D synthetase are similar but different enzymes and that the spleen enzyme is a unique glutathione S-transferase differing from other isozymes and their subunits reported previously.  相似文献   

18.
W Schlegel  S Krüger  K Korte 《FEBS letters》1984,171(1):141-144
Prostaglandin E2-9- oxoreductase (PGE2-9-OR), the enzyme which converts prostaglandin E2 (PGE2) to prostaglandin F2 alpha (PGF2 alpha), has been detected in human decidua vera. A 105-fold purification was achieved when the centrifuged homogenate was fractionated sequentially by DEAE-Trisacryl, hydroxyapatite-agarose gel, ultrogel AcA 44 and Matrex gel blue A gel chromatographies. The following kinetic constants for PGE2-9-OR have been obtained. The equilibrium constant with respect to PGE2 is 83 microM, the Michaelis constant, Km, for PGE2 is 80 microM, for NADPH 1.6 microM. The maximal velocity for the forward reaction is V1 = .203 pmol/min. The enzyme was inhibited by progesterone, oestradiol-17 beta, cortisol and pharmaceutical drugs. An activating effect could be demonstrated with Ca2+ and oxytocin. The occurrence of PGE2-9-OR in the decidua vera suggests that this enzyme may be responsible for the transformation of PGE2 to PGF2 alpha in these tissues. This may be an important mechanism for the initiation and maintenance of uterine contractions.  相似文献   

19.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

20.
The biosynthetic mechanism of prostaglandin D2 in human platelet-rich plasma has been investigated. Platelet-rich plasma was separated into washed platelets and platelet-poor plasma, and [1-14C]prostaglandin H2 was incubated with each fraction. The enzymatic conversion of the endoperoxide to prostaglandin D2 was found only in platelet-poor plasma and not in washed platelets or platelet lysate. This prostaglandin D synthetase activity was purified to homogeneity and identified as serum albumin by sodium dodecyl sulfate polyacrylamide gel electrophoresis, isoelectric focusing, and immunoelectrophoresis. The optimal pH and Km value for prostaglandin H2 were 9.0 and 6 microM, respectively. Glutathione was not required for the activity. Although prostaglandin H2 ws converted to prostaglandin D2 and E2 in the reaction, only the prostaglandin D2 formation was dependent on the protein amount and abolished by prior boiling. The action of this activity under physiological conditions was examined in a model system constituted of serum albumin and washed platelets. Prostaglandin D2 formation was observed in association with thrombin-evoked platelet aggregation in this system and was proportional to the number of platelets and the concentration of serum albumin, suggesting that thrombin-stimulated platelets released prostaglandin H2, and the latter compound was then converted to prostaglandin D2 by the action of serum albumin. Consistent with this interpretation, prostaglandin H2 added to platelet-rich plasma was converted in part to prostaglandin D2, and the aggregation caused by this endoperoxide was greatly enhanced by neutralizing the action of prostaglandin D2 with anti-prostaglandin D2 antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号