首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
The study of human population structure allows the assessment of cultural and historical influences on mating probabilities, and, hence, genetic variation. A commonly used model is isolation by distance, which predicts a negative exponential relationship between genetic similarity and geographic distance. Anthropometric data collected during the 1930's for 261 adult women in 12 towns of rural western Ireland were used to test the isolation by distance model and to assess the influence of cultural factors upon the fit of the model. The effects of recent migration were tested by using two additional data subsets, one excluding known intercounty migrants and the other consisting of unmarried women, only in an attempt to control partially for local migration upon marriage. Deviations from the expected isolation by distance model were analyzed using rotational fitting and regression analysis. Estimates of the isolation by distance parameters agree closely with independent estimates from isonymy and with estimates obtained in other studies of rural European population structure. Analysis of the residuals indicates three major factors which contribute to deviations from the expected model: recent migration upon marriage, age variation among groups, and variation in population size and/or transportation opportunities. Variation in population size was tested using the gravity model of economic geography by regressing the residuals from the isolation by distance model for each pair of towns on the product of their population sizes. The best fit occurred for the unmarried sample, as expected from ethnographic evidence, since rural–urban migration was most common among unmarried women.  相似文献   

2.
The Finnish wolf population (Canis lupus) was sampled during three different periods (1996-1998, 1999-2001 and 2002-2004), and 118 individuals were genotyped with 10 microsatellite markers. Large genetic variation was found in the population despite a recent demographic bottleneck. No spatial population subdivision was found even though a significant negative relationship between genetic relatedness and geographic distance suggested isolation by distance. Very few individuals did not belong to the local wolf population as determined by assignment analyses, suggesting a low level of immigration in the population. We used the temporal approach and several statistical methods to estimate the variance effective size of the population. All methods gave similar estimates of effective population size, approximately 40 wolves. These estimates were slightly larger than the estimated census size of breeding individuals. A Bayesian model based on Markov chain Monte Carlo simulations indicated strong evidence for a long-term population decline. These results suggest that the contemporary wolf population size is roughly 8% of its historical size, and that the population decline dates back to late 19th century or early 20th century. Despite an increase of over 50% in the census size of the population during the whole study period, there was only weak evidence that the effective population size during the last period was higher than during the first. This may be caused by increased inbreeding, diminished dispersal within the population, and decreased immigration to the population during the last study period.  相似文献   

3.
Bryophytes are a group of land plants in which the role of hybridization has long been challenged. Using genotyping by sequencing to circumvent the lack of molecular variation at selected loci previously used for phylogeny and morphology, we determine the level of genetic and morphological divergence and reproductive isolation between the sibling Syrrhopodon annotinus and S. simmondsii (Calymperaceae, Bryopsida) that occur in sympatry but in different habitats in lowland Amazonian rainforests. A clear morphological differentiation and a low (0.06), but significant Fst derived from the analysis of 183 single nucleotide polymorphisms were observed between the two species. Conspecific pairs of individuals consistently exhibited higher average kinship coefficients along a gradient of geographic isolation than interspecific pairs. The weak, but significant genetic divergence observed is consistent with growing evidence that ecological specialization can lead to genetic differentiation among bryophyte species. Nevertheless, the spatial genetic structures of the two species were significantly correlated, as evidenced by the significant slope of the Mantel test based on kinship coefficients between pairs of interspecific individuals and the geographic distance separating them. Interspecific pairs of individuals are thus more closely related when they are geographically closer, suggesting that isolation‐by‐distance is stronger than the interspecific reproductive barrier and pointing to interspecific gene flow. We conclude that interspecific introgression, whose role has long been questioned in bryophytes, may take place even in species wherein sporophyte production is scarce due to dioicy, raising the question as to what mechanisms maintain differentiation despite weak reproductive isolation.  相似文献   

4.
This study investigates the GM genetic relationships of 82 human populations, among which 10 represent original data, within and among the main broad geographic areas of the world. Different approaches are used: multidimensional scaling analysis and test for isolation by distance, to assess the correlation between genetic variation and spatial distributions; analysis of variance, to investigate the genetic structure at different hierarchical levels of population subdivision; genetic similarity map (geographic map distorted by available genetic information), to identify regions of high and low genetic variation; and minimal spanning network, to point out possible migration routes across continental areas. The results show that the GM polymorphism is characterized by one of the highest amounts of genetic variation observed so far among populations of different continents (Fct=0.3915, P < 0.0001). GM diversity can be explained by a model of isolation by distance (IBD) at most continental levels, with a particularly significant fit to IBD for the Middle East and Europe. Five peripheral regions of the world (Europe, west and south sub-Saharan Africa, Southeast Asia, and America) exhibit a low level of genetic diversity both within and among populations. By contrast, East and North African, Southwest Asian, and Northeast Asian populations are highly diverse and interconnected genetically by large genetic distances. Therefore, the observed GM variation can be explained by a "centrifugal model" of modern humans peopling history, involving ancient dispersals across a large intercontinental area spanning from East Africa to Northeast Asia, followed by recent migrations in peripheral geographic regions.  相似文献   

5.
Temporal bone shape has been shown to reflect molecular phylogenetic relationships among hominoids and offers significant morphological detail for distinguishing taxa. Although it is generally accepted that temporal bone shape, like other aspects of morphology, has an underlying genetic component, the relative influence of genetic and environmental factors is unclear. To determine the impact of genetic differentiation and environmental variation on temporal bone morphology, we used three-dimensional geometric morphometric techniques to evaluate temporal bone variation in 11 modern human populations. Population differences were investigated by discriminant function analysis, and the strength of the relationships between morphology, neutral molecular distance, geographic distribution, and environmental variables were assessed by matrix correlation comparisons. Significant differences were found in temporal bone shape among all populations, and classification rates using cross-validation were relatively high. Comparisons of morphological distances to molecular distances based on short tandem repeats (STRs) revealed a significant correlation between temporal bone shape and neutral molecular distance among Old World populations, but not when Native Americans were included. Further analyses suggested a similar pattern for morphological variation and geographic distribution. No significant correlations were found between temporal bone shape and environmental variables: temperature, annual rainfall, latitude, or altitude. Significant correlations were found between temporal bone size and both temperature and latitude, presumably reflecting Bergmann's rule. Thus, temporal bone morphology appears to partially follow an isolation by distance model of evolution among human populations, although levels of correlation show that a substantial component of variation is unexplained by factors considered here.  相似文献   

6.
To further elucidate the relationship between geography and genetics in Ireland, we considered variation in anthropometric traits of adult males by town using spatial autocorrelation methods. By describing and distinguishing significant patterns of anthropometric variation, we determined whether the anthropometric traits display a simple pattern of spatial variation, as predicted by the isolation by distance model, or other patterns of spatial variation. Several hypotheses were examined, including (1) whether there was spatial patterning of 20 anthropometric phenotypic distributions and 7 principal components of Irish males and (2) if there was, whether these phenotypic distributions could be explained by a simple isolation by distance model. The results of this study can be summarized by several key findings: (1) There is significant spatial patterning among towns, as detected in correlograms of 14 anthropometric traits and 2 principal component factor scores (values of Moran's I ranging from 0.7510 to -0.3616, p < or = 0.0071); (2) 4 spatial patterns were detected, including clinical patterns, long-distance differentiation, distance distinction, and regional patchiness. These results suggest several likely causes of the observed spatial patterns. First, in Ireland patterns of anthropometric variation could not be explained by a single spatial pattern (i.e., isolation by distance). Second, through an examination of the various combinations of statistical homogeneity or heterogeneity, spatial patterning or nonpatterning, and similarity or dissimilarity of spatial patterns, we conclude that several migrational events structured the genetic landscape of Ireland.  相似文献   

7.
Genetic variation was assessed in Atlantic wolffish, Anarhichas lupus, across the North Atlantic Ocean using microsatellite and amplified fragment length polymorphism (AFLP) markers. Despite unusual life history attributes such as large benthic eggs, large larvae, a limited pelagic stage and relatively sedentary adults, which suggest potential for strong population structure, range‐wide FST values were comparable to other marine fishes (≤0.035). Nevertheless, both significant genetic differentiation among regions and isolation by distance were observed, suggesting limited dispersal in this species. AFLP loci, evaluated on a subset of samples, revealed slightly higher FST values, but similar patterns of differentiation and isolation‐by‐distance estimates, compared to microsatellites. The genetic structure of Atlantic wolffish has likely been shaped by its post‐glacial history of recolonization, North Atlantic current patterns and continuity of habitat on continental shelves.  相似文献   

8.
Measurements in populations which serve as valid indicators of biological relationship should be proportional to genetic distance. In order to test the utility of discrete cranial traits for estimating genetic distances among populations, estimates of admixture are obtained for gene frequency data and nonmetric cranial data in São Paulo mulattos (M). The gene frequency data serve as a control that the three populations are related as stated: estimates of admixture are obtained by using São Paulo whites (W) and blacks (B) as parental populations and by estimating the parameter of admixture, m, in the model pM = (1 ? m) pW + mpB (Elston, 1971) where the p's are either gene frequencies or nonmetric trait frequencies. A test of goodness of fit of the model provides a means of ascertaining whether or not the data fit this linear model. While the gene frequency data indicate distances among the three populations which are highly compatible with the linear model of admixture, the nonmetric data show significant deviations from the model. This implies that the frequencies of the nonmetric traits in the populations used in this analysis are not a linear function of genetic distance. This discourages the use of nonmetric traits in making quantitative conclusions about genetic relationships. It also suggests the need for investigation of the use of other skeletal characters for estimating genetic distance, as well as approaches for such investigations through the study of hybrid individuals.  相似文献   

9.
Recent studies comparing craniometric and neutral genetic affinity matrices have concluded that, on average, human cranial variation fits a model of neutral expectation. While human craniometric and genetic data fit a model of isolation by geographic distance, it is not yet clear whether this is due to geographically mediated gene flow or human dispersal events. Recently, human genetic data have been shown to fit an iterative founder effect model of dispersal with an African origin, in line with the out-of-Africa replacement model for modern human origins, and Manica et al. (Nature 448 (2007) 346-349) have demonstrated that human craniometric data also fit this model. However, in contrast with the neutral model of cranial evolution suggested by previous studies, Manica et al. (2007) made the a priori assumption that cranial form has been subject to climatically driven natural selection and therefore correct for climate prior to conducting their analyses. Here we employ a modified theoretical and methodological approach to test whether human cranial variability fits the iterative founder effect model. In contrast with Manica et al. (2007) we employ size-adjusted craniometric variables, since climatic factors such as temperature have been shown to correlate with aspects of cranial size. Despite these differences, we obtain similar results to those of Manica et al. (2007), with up to 26% of global within-population craniometric variation being explained by geographic distance from sub-Saharan Africa. Comparative analyses using non-African origins do not yield significant results. The implications of these results are discussed in the light of the modern human origins debate.  相似文献   

10.
Evolutionary processes can be influenced by several factors, such as geographic isolation, environmental selection, and sensory variation. For most nocturnal bats, echolocation is the primary sensory system used to prey and communicate, and plays important roles in chiropteran diversification and evolution. Understanding the relative contribution of geography, the environment, and this sensory system to population genetic divergence can elucidate the processes involved in bat incipient speciation and evolution. In this study, we collected spatial and environmental information, echolocation calls, as well as the previously published genetic data (six microsatellite loci and the mitochondrial cytochrome b gene) of widely distributed Rhinolophus episcopus populations to test three hypotheses for nuclear and mitochondrial divergence (isolation by distance, isolation by environment, and isolation by sensory variation) and unveil the factors that drive intraspecific genetic differentiation. The moderate level of nuclear differentiation was correlated with geographic/spatial distance and acoustic variation, whereas the relatively high level of mitochondrial differentiation was mainly associated with acoustic divergence. No significant correlation was observed between genetic divergence and environmental variables. Among the three factors, acoustic divergence explained the highest percentage of both nuclear and mitochondrial divergence. Thus, our results indicate that sensory variation may have played important roles in driving population isolation early in bat speciation, which is consistent with the hypothesis of isolation by sensory variation. Our study emphasizes the need to consider more factors, especially sensory traits, and combine multiple statistical methods in landscape genetic studies to test their potential contributions to driving population divergence.  相似文献   

11.
Estimating geographical ranges of intra‐specific evolutionary lineages is crucial to the fields of biogeography, evolution, and biodiversity conservation. Models of isolation mechanisms often consider multiple distances in order to explain genetic divergence. Yet, the available methods to estimate the geographical ranges of lineages are based on direct geographical distances, neglecting other distance metrics that can better explain the spatial genetic structure. We extended the phylogeographical interpolation method (phylin ) in order to accommodate user‐defined distance metrics and to incorporate the uncertainty associated with genetic distance calculation. These new features were tested with simulated and empirical data sets. Multiple distance matrices were generated including geographical, resistance, and environmental distances to derive maps of lineage occurrence. The new additions to this method improved the ability to predict lineage occurrence, even with low sample size. We used a regression framework to quantify the relationship between the genetic divergence and competing distance matrices representing potential isolation processes that are subsequently used in the interpolation process. Including uncertainty in tree topology and the different distance matrices improved the robustness of the variograms, allowing a better fit of the theoretical model of spatial dependence. The improvements to the method increase its potential application in other fields. Accurately mapping genetic divergence can help to locate potential contact zones between lineages as well as barriers to gene flow, which has a broad interest in biogeographical and evolutionary studies. Additionally, conservation efforts could benefit from the integration of genetic variation and landscape features in a spatially explicit framework.  相似文献   

12.
The population genetic structure of three species of Amazonian rodents ( Oligoryzomys microtis, Oryzomys capito , and Mesomys hispidus ) is examined for mtDNA sequence haplotypes of the cytochrome b gene by hierarchical analysis of variance and gene flow estimates based on fixation indices ( N ST) and coalescence methods. Species samples are from the same localities along 1000 km of the Rio Juruá in western Amazonian Brazil, but each species differs in important life history traits such as population size and reproductive rate. Average haplotype differentiation, hierarchical haplotype apportionment, and gene flow estimates are contrasted in discussing the current and past population structure. Two species exhibit isolation by distance patterns wherein gene flow is largely limited to geographically adjacent localities. Mesomys exhibits this pattern throughout its range along the river. More than 75% of haplotype variation is apportioned among localities and regions, and estimates of Nm for pair-wise comparisons are nearly always less than 1. Oligoryzomys shows weak isolation by distance, but only over the largest geographical distances. Nm values for this species are nearly always above 1 and most (about 80%) of haplotype variation is contained within local populations. In contrast, Oryzomys exhibits no genetic structure throughout its entire distribution; Nm values average 17 and nearly 90% of the total haplotype variance is contained within local populations. Although gene flow estimates are high, the pattern of Nm as a function of geographical distance suggests that this species experienced a more recent invasion of the region and is still in genetic disequilibrium under its current demographic conditions.  相似文献   

13.
Genetic variation was estimated in ten samples populations of Aedes aegypti from the Brazilian Amazon, by using a 380 bp fragment of the mitochocondrial NADH dehydrogenase subunit 4 (ND4) gene. A total of 123 individuals were analyzed, whereby 13 haplotypes were found. Mean genetic diversity was slightly high (h = 0.666 ± 0.029; π = 0.0115 ± 0.0010). Two AMOVA analyses indicated that most of the variation (~70%-72%) occurred within populations. The variation found among and between populations within the groups disclosed lower, but even so, highly significant values. F(ST) values were not significant in most of the comparisons, except for the samples from Pacaraima and Rio Branco. The isolation by distance (IBD) model was not significant (r = 0.2880; p = 0.097) when the samples from Pacaraima and Rio Branco were excluded from the analyses, this indicating that genetic distance is not related to geographic distance. This result may be explained either by passive dispersal patterns (via human migrations and commercial exchange) or be due to the recent expansion of this mosquito in the Brazilian Amazon. Phylogenetic relationship analysis showed two genetically distinct groups (lineages) within the Brazilian Amazon, each sharing haplotypes with populations from West Africa and Asia.  相似文献   

14.
Genetic variation at 33 protein loci was investigated in 41 wild brown trout populations from four river basins in Galicia (northwest Spain) to analyse the amount and distribution of genetic diversity in a marginal area, located in the distribution limit of the anadromous form of this species. The genetic diversity detected within populations (H between 0 and 6%) lies within the range quoted for this species in previous reports. The Mino, the most southern river basin analysed, showed a significantly lower genetic diversity and the highest genetic differentiation among the river basins studied. The hierarchical gene diversity analysis showed high population differentiation in a restricted area (GST = 27%), mostly due to differences among populations within basins (GSC = 22%). The reduction of GST observed when the isolated samples were excluded from the analysis (GST = 17%) showed the importance of habitat fragmentation on the heterogeneity detected. Gene flow among populations was comparatively evaluated by three indirect methods, which in general revealed low figures of absolute number of migrants per generation, slightly higher than 1. The gene flow among basins reflected a positive relationship with geographical distance. This trend was confirmed by the significant correlation observed between geographical and genetic distances, including all population pairs, which suggests a component of isolation by distance in brown trout genetic structure. Nevertheless, the nonsignificant intrabasin correlation demonstrates the complexity of genetic relationships among populations in this species. The model of genetic structure in brown trout is discussed in the light of the results obtained.  相似文献   

15.
Elucidating the factors influencing genetic differentiation is an important task in biology, and the relative contribution from natural selection and genetic drift has long been debated. In this study, we used a regression-based approach to simultaneously estimate the quantitative contributions of environmental adaptation and isolation by distance on genetic variation in Boechera stricta, a wild relative of Arabidopsis. Patterns of discrete and continuous genetic differentiation coexist within this species. For the discrete differentiation between two major genetic groups, environment has larger contribution than geography, and we also identified a significant environment-by-geography interaction effect. Elsewhere in the species range, we found a latitudinal cline of genetic variation reflecting only isolation by distance. To further confirm the effect of environmental selection on genetic divergence, we identified the specific environmental variables predicting local genotypes in allopatric and sympatric regions. Water availability was identified as the possible cause of differential local adaptation in both geographical regions, confirming the role of environmental adaptation in driving and maintaining genetic differentiation between the two major genetic groups. In addition, the environment-by-geography interaction is further confirmed by the finding that water availability is represented by different environmental factors in the allopatric and sympatric regions. In conclusion, this study shows that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, which only produced a gradual, clinal pattern of genetic variation. These findings emphasize the importance of environmental selection in shaping patterns of species-wide genetic variation in the natural environment.  相似文献   

16.
The evolution of reproductive isolation within Coreopsis is investigated by integrating phylogenetic data with estimates of pollen viability of plants from inter- and intraspecific crosses. Three different models that predict F1 fitness are compared. The first uses ITS pairwise distances, the second is based on phylogenetic branch lengths derived from DNA sequences, and the third elaborates on the second model by dividing branch length according to reconstructions of the evolution of life history. This is the first study to use phylogenetic branch-length estimates for predicting levels of reproductive isolation. Estimated branch lengths (model 2) predict hybrid fitness more accurately than simply genetic distance (model 1) but only very slightly. This is probably because the two variables are strongly correlated in Coreopsis. Prediction is substantially improved by allowing evolutionary rates to differ between annual and perennial branches (model 3). A bootstrapping procedure indicates that the life-history effect is statistically significant. The more rapid evolution of reproductive isolation within annual species of Coreopsis may be due to differing mechanisms of reproductive isolation, that is, chromosomal rearrangements rather than genetic incompatibilities.  相似文献   

17.
 居群遗传结构的形成受到各种因素的影响。其中, 繁殖方式可能对居群内遗传变异有极其重要的意义, 而距离隔离也是居群间变异产 生的主要原因之一。异果舞花姜(Globba racemosa)具有混合繁殖策略(以种子进行有性繁殖和以珠芽进行无性克隆繁殖)。调查分布于云南的7 个异果舞花姜居群间有性与无性克隆繁殖的差异。采用ISSR标记研究各个居群的遗传多样性与克隆多样性, 探讨繁殖方式和距离隔离对居群遗 传结构的影响。调查结果表明, 异果舞花姜各个居群存在一定的繁殖差异。ISSR结果显示, 该种在种水平上呈现较高水平的遗传变异 (PPB=71.19%), 大部分的变异来自于居群间(GST = 0.590 7)。同时, 异果舞花姜具有较高水平克隆多样性(G/N = 0.88)。遗传多样性和克隆多 样性与繁殖水平的变异间相关性不明显, 说明繁殖方式不是居群遗传结构形成的必要和决定性的因素。居群间的地理距离与遗传距离显著相关 (r = 0.68, p < 0.05), 表明距离隔离是居群间遗传变异形成的重要原因。其它因素(如少量新有性个体的补充、细胞突变、奠基效应等)也对 异果舞花姜居群遗传结构的形成和维持起到了重要作用。  相似文献   

18.
Geographic variation within species can originate through selection and drift in situ (primary variation) or from vicariant episodes (secondary variation). Most patterns of subspecific variation within European flora and fauna are thought to have secondary origins, reflecting isolation in refugia during Quaternary ice ages. The bushcricket Ephippiger ephippiger has an unusual pattern of geographical variability in morphology, behaviour and allozymes in southern France, which has been interpreted as reflecting recent primary origins rather than historical isolation. Re-analysis of this variation using Geographical Information Systems (GIS) suggests a possible zone of hybridization within a complex pattern of geographical variation. Here we produce a genetic distance matrix from restriction fragment length polymorphism (RFLP) bandsharing of an approximately 4.5 kb fragment of mitochondrial DNA (mtDNA), and compare this with predictions resulting from the GIS analysis. The mtDNA variation supports a postglacial origin of geographical variation. Partial Mantel test comparisons of genetic distances with matrices of geographical distance, relevant environmental characteristics and possible refugia show refugia to be the best predictors of genetic distance. There is no evidence to support isolation by distance. However, environmental contrasts do explain significant variation in genetic distance after allowing for the effect of refugial origin. Also, a neighbour-joining tree has a major division separating eastern and western forms. We conclude that the major source of variation within the species is historical isolation in glacial refugia, but that dispersal, hybridization and selection associated with environmental features has influenced patterns of mtDNA introgression. At least two valid subspecies can be defined.  相似文献   

19.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

20.
We report a detailed analysis of the population genetic structure, mating system, and gene flow of heart of palm (Euterpe edulis Mart.-Arecaceae) in central Brazil. This palm is considered a keystone species because it supplies fruits for birds and rodents all year and is intensively harvested for culinary purposes. Two populations of this palm tree were examined, using 18 microsatellite loci. The species displays a predominantly outcrossed mating system (tm = 0.94), with a probability of full sibship greater than 70% within open-pollinated families. The following estimates of interpopulation genetic variation were calculated and found significant: FIT = 0.17, FIS = 0.12, FST = 0.06, and RST = 0.07. This low but significant level of interpopulation genetic variation indicates high levels of gene flow. Two adult trees were identified as likely seed parents (P > 99.9%) of juveniles located at a distance of 22 km. Gene flow over such distances has not been reported before for tropical tree species. The establishment and management of in situ genetic reserves or ex situ conservation and breeding populations for E. edulis should contemplate the collection of several hundreds open-pollinated maternal families from relatively few distant populations to maximize the genetic sampling of a larger number of pollen parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号