共查询到20条相似文献,搜索用时 30 毫秒
1.
Different types of proton transfer occurring in biological systems are described with examples mainly from ribonucleotide reductase (RNR) and cytochrome c oxidase (CcO). Focus is put on situations where electron and proton transfer are rather strongly coupled. In the long range radical transfer in RNR, it is shown that the presence of hydrogen atom transfer (HAT) is the most logical explanation for the experimental observations. In another example from RNR, it is shown that a transition state for concerted motion of both proton and electron can be found even if the donors are separated by a quite long distance. In CcO, the essential proton transfer for the OO bond cleavage, and the most recent modelings of proton translocation are described, indicating a few remaining major problems. 相似文献
2.
Recent developments of quantum chemical methods have made it possible to tackle crucial questions in bioenergetics. The most important systems, cytochrome c oxidase in cellular respiration and photosystem II (PSII) in photosynthesis will here be used as examples to illustrate the power of the quantum chemical tools. One main contribution from quantum chemistry is to put mechanistic suggestions onto an energy scale. Accordingly, free energy profiles can be constructed both for reduction of molecular oxygen in cytochrome c oxidase and water oxidation in PSII, including O-O bond cleavage and formation, and also proton pumping in cytochrome c oxidase. For the construction of the energy diagrams, the computational results sometimes have to be combined with experimental information, such as reduction potentials and rate constants for individual steps in the reactions. 相似文献
3.
Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. 相似文献
4.
Cytochrome c oxidase is a large intrinsic membrane protein designed to use the energy of electron transfer and oxygen reduction to pump protons across a membrane. The molecular mechanism of the energy conversion process is not understood. Other proteins with simpler, better resolved structures have been more completely defined and offer insight into possible mechanisms of proton transfer in cytochrome c oxidase. Important concepts that are illustrated by these model systems include the ideas of conformational change both close to and at a distance from the triggering event, and the formation of a transitory water-linked proton pathway during a catalytic cycle. Evidence for the applicability of these concepts to cytochrome c oxidase is discussed. 相似文献
5.
Cytochrome c oxidase (COX), the last enzyme of the respiratory chain of aerobic organisms, catalyzes the reduction of molecular oxygen to water. It is a redox-linked proton pump, whose mechanism of proton pumping has been controversially discussed, and the coupling of proton and electron transfer is still not understood. Here, we investigated the kinetics of proton transfer reactions following the injection of a single electron into the fully oxidized enzyme and its transfer to the hemes using time-resolved absorption spectroscopy and pH indicator dyes. By comparison of proton uptake and release kinetics observed for solubilized COX and COX-containing liposomes, we conclude that the 1-μs electron injection into Cu(A), close to the positive membrane side (P-side) of the enzyme, already results in proton uptake from both the P-side and the N (negative)-side (1.5 H(+)/COX and 1 H(+)/COX, respectively). The subsequent 10-μs transfer of the electron to heme a is accompanied by the release of 1 proton from the P-side to the aqueous bulk phase, leaving ~0.5 H(+)/COX at this side to electrostatically compensate the charge of the electron. With ~200 μs, all but 0.4 H(+) at the N-side are released to the bulk phase, and the remaining proton is transferred toward the hemes to a so-called "pump site." Thus, this proton may already be taken up by the enzyme as early as during the first electron transfer to Cu(A). These results support the idea of a proton-collecting antenna, switched on by electron injection. 相似文献
6.
The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models
much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence
with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some
cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not
contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM)
calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken
when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid
density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally
given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in
photosystem II.
相似文献
Per E. M. SiegbahnEmail: |
7.
The electronic structures of heme-dioxygen complexes have been studied as intermediate models of dioxygen reduction mechanism catalyzed by the mixed valence (MV) and fully reduced (FR) cytochrome c oxidase (CcO). Dioxygen, protons and electrons were sequentially added to the heme along the proposed reaction path for the O(2) reduction mechanism. The electronic structures of [FeOO], [FeOO](-), [FeOOH](+), [FeOOH], [Fe=O, H(2)O](+), [Fe=O](+) and [Fe=O] were thoroughly investigated by using the unrestricted hybrid exchange-correlation functional B3LYP method. The additions of two protons and an electron to [FeOO] lead to the OO bond cleavage to produce a H(2)O molecule with the electron transfer from Fe(II) in heme to the OO moiety. It is shown that the intrinsic OO bond cleavage occurs by adding two protons and two electrons into the OO bond, indicating consistency with a H(2)O formation catalyzed by both MV and FR CcO. The study of the electronic structures of heme-dioxygen complexes gave the different proposals for the mechanisms of a H(2)O formation by both MV and FR CcO. For the mixed valence CcO, starting from the [FeOO] complex, the final products are single H(2)O molecule and compound I of the oxo heme. For the fully reduced CcO, the final products are single H(2)O molecule and compound II of the oxo heme which is a reduced state of the compound I. 相似文献
8.
Yoshikawa S 《FEBS letters》2003,555(1):8-12
A redox-coupled conformational change in Asp51 of subunit I and a hydrogen-bond network connecting Asp51 with the matrix surface have been deduced from X-ray structures of bovine heart cytochrome c oxidase. This has provided evidence that Asp51 may play a role in the proton pumping process. However, the lack of complete conservation of a residue analogous to Asp51, the inclusion of a peptide bond in the hydrogen-bonding network and the lack of apparent involvement of the O2 reduction site have been used as arguments against the involvement of Asp51 in the mechanism of proton pumping. This minireview re-examines these arguments. 相似文献
9.
Lipowski G Liebl U Guigliarelli B Nitschke W Schoepp-Cothenet B 《FEBS letters》2006,580(25):5988-5992
The EPR spectral parameters of aa(3) oxidase and cyt c(552) from Paracoccus denitrificans were studied in purified oxidase and enriched cyt c(552). The orientation of the g-tensors of hemes a and c(552) were determined on partially ordered membranes, enriched cyt c(552) and a c(552):aa(3) subcomplex. The known correlation of g-tensor to molecular axes in histidine/methionine ligated hemes permits us to position cyt c(552) with respect to the parent membrane. Taken together with previous data on the interaction surface between aa(3) oxidase and cyt c(552), these results allow us to arrive at a single conformation for the c(552):aa(3) electron transfer complex. 相似文献
10.
A promoted electron transfer of an antitumor drug, mitoxantrone (MTX), intercalating into DNA duplex was successfully obtained upon addition of cytochromes c (cyt. c) in NaAc-HAc buffer solution (pH 4.5). The experimental results suggested that co-existence of MTX and cyt. c in the DNA helix is an important factor for accelerated electron transfer of MTX, where the promoter, cyt. c, operated smoothly through the DNA bridge. The UV/Vis spectroscopic experiments further confirmed the interaction process. Furthermore, a possible mechanism of such reaction was also discussed in this paper. 相似文献
11.
A computational study of hydrogen-bonded complexes between the oxo-/hydroxo-amino N7/9H tautomers of guanine and water, methanol,
and hydrogen peroxide has been performed at the B3LYP/6-31+G(d) level of theory. The mechanisms of the water-, methanol-,
and hydrogen peroxide-assisted proton transfers in guanine were studied and compared with the intramolecular proton transfer
in guanine in the gas phase. It was found that the assisted proton transfers pass through about three times lower energy barriers
than those found for isolated guanine tautomers.
Figure DFT study of the gas phase proton transfer in guanine assisted by water, methanol and hydrogen peroxide 相似文献
12.
Jiancong Xu 《BBA》2008,1777(2):196-201
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site. 相似文献
13.
Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes. 相似文献
14.
Lancaster CR 《FEBS letters》2003,545(1):52-60
Electrostatic interactions play a key role in the coupling of electron and proton transfer in membrane protein complexes during the conversion of the energy stored in sunlight or reduced substrates into biochemical energy via a transmembrane electrochemical proton potential. Principles of charge stabilization within membrane proteins are reviewed and discussed for photosynthetic reaction centers, cytochrome c oxidases, and diheme-containing quinol:fumarate reductases. The impact of X-ray structure-based electrostatic calculations on the functional interpretation of these structural coordinates, on providing new explanations for experimental observations, and for the design of more focused additional experiments is illustrated by a number of key examples. 相似文献
15.
Haem-copper oxidases are the last components of the respiratory chains in aerobic organisms. These membrane-bound enzymes energetically couple the electron transfer (eT) reactions associated with reduction of dioxygen to water, to proton pumping across the membrane. Even though the mechanism of proton pumping at the molecular level still remains to be uncovered, recent progress has presented us with the structural features of the pumping machinery and detailed information about the eT and proton-transfer reactions associated with the pumping process. 相似文献
16.
Anders C. Raffalt 《Journal of inorganic biochemistry》2009,103(5):717-722
We report kinetic data for the two-step electron transfer (ET) oxidation and reduction of the two-domain di-heme redox protein Pseudomonas stutzeri cytochrome (cyt) c4 by [Co(bipy)3]2+/3+ (bipy = 2,2′-bipyridine). Following earlier reports, the data accord with both bi- and tri-exponential kinetics. A complete kinetic scheme includes both “cooperative” intermolecular ET between each heme group and the external reaction partner, and intramolecular ET between the two heme groups. A new data analysis scheme shows unequivocally that two-ET oxidation and reduction of P. stutzeri cyt c4 is entirely dominated by intermolecular ET between the heme groups and the external reaction partner in the ms time range, with virtually no contribution from intramolecular interheme ET in this time range. This is in striking contrast to two-ET electrochemical oxidation or reduction of P. stutzeri cyt c4 for which fast, ms to sub-ms intramolecular interheme ET is a crucial step. The rate constant dependence on the solvent viscosity has disclosed strong coupling to both a (set of) frictionally damped solvent/protein nuclear modes and intramolecular friction-less “ballistic” modes, indicative of notable protein structural mobility in the overall two-ET process. We suggest that conformational protein mobility blocks intramolecular interheme ET in bulk homogeneous solution but triggers opening of this gated ET channel in the electrochemical environment or in the membrane environment of natural respiratory cyt c4 function. 相似文献
17.
Lars J.C. Jeuken 《BBA》2003,1604(2):67-76
Protein-protein electron transfer (ET) plays an essential role in all redox chains. Earlier studies which used cross-linking and increased solution viscosity indicated that the rate of many ET reactions is limited (i.e., gated) by conformational reorientations at the surface interface. These results are later supported by structural studies using NMR and molecular modelling. New insights into conformational gating have also come from electrochemical experiments in which proteins are noncovalently adsorbed on the electrode surface. These systems have the advantage that it is relatively easy to vary systematically the driving force and electronic coupling. In this review we summarize the current knowledge obtained from these electrochemical experiments and compare it with some of the results obtained for protein-protein ET. 相似文献
18.
Crimi M Astegno A Zoccatelli G Esposti MD 《Archives of biochemistry and biophysics》2006,445(1):65-71
To assess the effect of lipids and lipid exchange in the pro-apoptotic release of cytochrome c, we investigated the ability of a plant lipid transfer protein (LTP) to initiate the apoptotic cascade at the mitochondrial level. The results show that maize LTP is able to induce cytochrome c release from the intermembrane space of mouse liver mitochondria without significant mitochondrial swelling, similarly to mouse full-length Bid. This effect is influenced by the presence of specific lipids, since addition of lysolipids like lysophosphatidylcholine strongly stimulates the LTP-induced release of cytochrome c while it is inhibited by removal of endogenous free lipids with a complete suppression of the LTP-induced release of cytochrome c. The results are discussed in light of the possible role of lipid exchange in apoptosis. 相似文献
19.
Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied
at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of
the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the
calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton
transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744–2750, 1999).
Figure H-bonded complex between i-propanol and adenine 相似文献
20.
Davidson VL 《Archives of biochemistry and biophysics》2004,428(1):32-40
Soluble quinoprotein dehydrogenases oxidize a wide range of sugar, alcohol, amine, and aldehyde substrates. The physiological electron acceptors for these enzymes are not pyridine nucleotides but are other soluble redox proteins. This makes these enzymes and their electron acceptors excellent systems with which to study mechanisms of long-range interprotein electron transfer reactions. The tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) transfers electrons to a blue copper protein, amicyanin. It has been possible to alter the rate of electron transfer by using different redox forms of MADH, varying reaction conditions, and performing site-directed mutagenesis on these proteins. From kinetic and thermodynamic analyses of the reaction rates, it was possible to determine whether a change in rate is due a change in Delta G(0), electronic coupling, reorganization energy or kinetic mechanism. Examples of each of these cases are discussed in the context of the known crystal structures of the electron transfer protein complexes. The pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase transfers electrons to a c-type cytochrome. Kinetic and thermodynamic analyses of this reaction indicated that this electron transfer reaction was conformationally coupled. Quinohemoproteins possess a quinone cofactor as well as one or more c-type hemes within the same protein. The structures of a PQQ-dependent quinohemoprotein alcohol dehydrogenase and a TTQ-dependent quinohemoprotein amine dehydrogenase are described with respect to their roles in intramolecular and intermolecular protein electron transfer reactions. 相似文献