首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-pi interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular alpha-helices and beta-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.  相似文献   

2.
Antimicrobial peptides attract a lot of interest as potential candidates to overcome bacterial resistance. So far, nearly all the proposed scenarios for their mechanism of action are associated with perforating and breaking down bacterial membranes after a binding process. In this study we obtained additional information on peptide induced demixing of bacterial membranes as a possible mechanism of specificity of antimicrobial peptides. We used DSC and FT-IR to study the influence of a linear and cyclic arginine- and tryptophan-rich antimicrobial peptide having the same sequence (RRWWRF) on the thermotropic phase transitions of lipid membranes. The cyclization of the peptide was found to enhance its antimicrobial activity and selectivity ( Dathe, M. Nikolenko, H. Klose, J. Bienert, M. Biochemistry 43 (2004) 9140-9150). A particular preference of the binding of the peptides to DPPG headgroups compared to other headgroups of negatively charged phospholipids, namely DMPA, DPPS and cardiolipin was observed. The main transition temperature of DPPG bilayers was considerably decreased by the bound peptides. The peptides caused a substantial down-shift of the transition of DPPG/DMPC. In contrast, they induced a demixing in DPPG/DPPE bilayers and led to the appearance of two peaks in the DSC curves indicating a DPPG-peptide-enriched domain and a DPPE-enriched domain. These results could be confirmed by FT-IR-spectroscopic measurements. We therefore propose that the observed peptide-induced lipid demixing in PG/PE-membranes could be a further specific effect of the antimicrobial peptides operating only on bacterial membranes, which contain appreciable amounts of PE and PG, and which could in principle also occur in liquid-crystalline membranes.  相似文献   

3.
Antimicrobial peptides have raised much interest as pathogens become resistant against conventional antibiotics. We review biophysical studies that have been performed to better understand the interactions of linear amphipathic cationic peptides such as magainins, cecropins, dermaseptin, δ-lysin or melittin. The amphipathic character of these peptides and their interactions with membranes resemble the properties of detergent molecules and analogies between membrane-active peptide and detergents are presented. Several models have been suggested to explain the pore-forming, membrane-lytic and antibiotic activities of these peptides. Here we suggest that these might be ‘special cases’ within complicated phase diagrams describing the morphological plasticity of peptide/lipid supramolecular assemblies.  相似文献   

4.
Cationic antimicrobial peptides (CAMPs) are novel candidates for drug development. Here we describe design of six short and potent CAMPs (SA-1 to SA-6) based on a minimalist template of 12 residues H+HHG+HH+HH+NH2 (where H: hydrophobic amino acid and +: charged hydrophilic amino acid). Designed peptides exhibit good antibacterial activity in micro molar concentration range (1-32 μg/ml) and rapid clearance of Gram-positive and Gram-negative bacterial strains at concentrations higher than MIC. For elucidating mode of action of designed peptides various biophysical studies including CD and Trp fluorescence were performed using model membranes. Further based on activity, selectivity and membrane bound structure; modes of action of Trp rich peptide SA-3 and template based peptide SA-4 were compared. Calcein dye leakage and transmission electron microscopic studies with model membranes exhibited selective membrane active mode of action for peptide SA-3 and SA-4. Extending our work from model membranes to intact E. coli ATCC 11775 in scanning electron micrographs we could visualize different patterns of surface perturbation caused by peptide SA-3 and SA-4. Further at low concentration rapid translocation of FITC-tagged peptide SA-3 into the cytoplasm of E. coli cells without concomitant membrane perturbation indicates involvement of intracellular targeting mechanism as an alternate mode of action as was also evidenced in DNA retardation assay. For peptide SA-4 concentration dependent translocation into the bacterial cytoplasm along with membrane perturbation was observed. Establishment of a non specific membrane lytic mode of action of these peptides makes them suitable candidates for drug development.  相似文献   

5.
The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional 15N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40° and two possible rotation angles differing by 180° around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. 13C-31P distances between the S4 backbone and the lipid 31P indicate a ∼ 9 Å local thinning and 2 Å average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 Å from the guanidinium Cζ of the second Arg to 31P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix.  相似文献   

6.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable α-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

7.
Antimicrobial peptides (AMPs) have attracted much interest in recent years because of their potential use as new-generation antibiotics. Indolicidin (IL) is a 13-residue cationic AMP that is effective against a broad spectrum of bacteria, fungi, and even viruses. Unfortunately, its high hemolytic activity retards its clinical applications. In this study, we adopted molecular dynamics (MD) simulations as an aid toward the rational design of IL analogues exhibiting high antimicrobial activity but low hemolysis. We employed long-timescale, multi-trajectory all-atom MD simulations to investigate the interactions of the peptide IL with model membranes. The lipid bilayer formed by the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was chosen as the model erythrocyte membrane; lipid bilayers formed from a mixture of POPC and the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol were chosen to model bacterial membranes. MD simulations with a total simulation time of up to 4 μs revealed the mechanisms of the processes of IL adsorption onto and insertion into the membranes. The packing order of these lipid bilayers presumably correlated to the membrane stability upon IL adsorption and insertion. We used the degree of local membrane thinning and the reduction in the order parameter of the acyl chains of the lipids to characterize the membrane stability. The order of the mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol/POPC lipid bilayer reduced significantly upon the adsorption of IL. On the other hand, although the order of the pure-POPC lipid bilayer was perturbed slightly during the adsorption stage, the value was reduced more dramatically upon the insertion of IL into the membrane's hydrophobic region. The results imply that enhancing IL adsorption on the microbial membrane may amplify its antimicrobial activity, while the degree of hemolysis may be reduced through inhibition of IL insertion into the hydrophobic region of the erythrocyte membrane. In addition, through simulations, we identified the amino acids that are most responsible for the adsorption onto or insertion into the two model membranes. Positive charges are critical to the peptide's adsorption, whereas the presence of hydrophobic Trp8 and Trp9 leads to its deeper insertion. Combining the hypothetical relationships between the membrane disordering and the antimicrobial and hemolytical activities with the simulated results, we designed three new IL-analogous peptides: IL-K7 (Pro7 → Lys), IL-F89 (Trp8 and Trp9 → Phe), and IL-K7F89 (Pro7 → Lys; Trp8 and Trp9 → Phe). The hemolytic activity of IL-F89 is considerably lower than that of IL, whereas the antimicrobial activity of IL-K7 is greatly enhanced. In particular, the de novo peptide IL-K7F89 exhibits higher antimicrobial activity against Escherichia coli; its hemolytic activity decreased to only 10% of that of IL. Our simulated and experimental results correlated well. This approach—coupling MD simulations with experimental design—is a useful strategy toward the rational design of AMPs for potential therapeutic use.  相似文献   

8.
To gain further insight into the antimicrobial activities of cationic linear peptides, we investigated the topology of each of two peptides, PGLa and magainin 2, in oriented phospholipid bilayers in the presence and absence of the other peptide and as a function of the membrane lipid composition. Whereas proton-decoupled 15N solid-state NMR spectroscopy indicates that magainin 2 exhibits stable in-plane alignments under all conditions investigated, PGLa adopts a number of different membrane topologies with considerable variations in tilt angle. Hydrophobic thickness is an important parameter that modulates the alignment of PGLa. In equimolar mixtures of PGLa and magainin 2, the former adopts transmembrane orientations in dimyristoyl-, but not 1-palmitoyl-2-oleoyl-, phospholipid bilayers, whereas magainin 2 remains associated with the surface in all cases. These results have important consequences for the mechanistic models explaining synergistic activities of the peptide mixtures and will be discussed. The ensemble of data suggests that the thinning of the dimyristoyl membranes caused by magainin 2 tips the topological equilibrium of PGLa toward a membrane-inserted configuration. Therefore, lipid-mediated interactions play a fundamental role in determining the topology of membrane peptides and proteins and thereby, possibly, in regulating their activities as well.  相似文献   

9.
Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides.  相似文献   

10.
Short antimicrobial peptides represent an alternative to fight pathogen infections. PAF26 is a hexapeptide identified previously by a combinatorial approach against the fungus Penicillium digitatum and shows antimicrobial properties towards certain phytopathogenic fungi. In this work, PAF26 was used as lead compound and its properties were compared with two series of derivatives, obtained by either systematic alanine substitution or N-terminal amino acid addition. The alanine scan approach underlined the optimized sequence of PAF26 in terms of potency and permeation capability, and also the higher contribution of the cationic residues to these properties. The N-terminal addition of amino acids resulted in new heptapeptides with variations in their antimicrobial characteristics, and very low cytolysis to human red blood cells. Positive (Arg or Lys) and aromatic (Phe or Trp) residue addition increased broad spectrum activity of PAF26. Noteworthy, addition of selected residues had specific effects on the properties of derivatives of PAF26.  相似文献   

11.
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.  相似文献   

12.
Can antimicrobial peptides scavenge around a cell in less than a second?   总被引:1,自引:0,他引:1  
Antimicrobial peptides, which play multiple host-defense roles, have garnered increased experimental focus because of their potential applications in the pharmaceutical and food production industries. While their mechanisms of action are richly debated, models that have been advanced share modes of peptide-lipid interactions that require peptide dynamics. Before the highly cooperative and specific events suggested in these models take place, peptides must undergo an important process of migration along the membrane surface and delivery from their site of binding on the membrane to the actual site of functional performance. This phenomenon, which contributes significantly to antimicrobial function, is poorly understood, largely due to a lack of experimental and computational tools needed to assess it. Here, we use 15N solid-state nuclear magnetic resonance to obtain molecular level data on the motions of piscidin's amphipathic helices on the surface of phospholipid bilayers. The studies presented here may help contribute to a better understanding of the speed at which the events that lead to antimicrobial response take place. Specifically, from the perspective of the kinetics of cellular processes, we discuss the possibility that piscidins and perhaps many other amphipathic antimicrobial peptides active on the membrane surface may represent a class of fast scavengers rather than static polypeptides attached to the water-lipid interface.  相似文献   

13.
The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine, whose effectiveness has been abolished by a single-site mutation of Ser31 to Asn in the transmembrane domain of the protein. Recent high-resolution structures of the M2 transmembrane domain obtained from detergent-solubilized protein in solution and crystal environments gave conflicting drug binding sites. We present magic-angle-spinning solid-state NMR results of Ser31 and a number of other residues in the M2 transmembrane peptide (M2TMP) bound to lipid bilayers. Comparison of the spectra of the membrane-bound apo and complexed M2TMP indicates that Ser31 is the site of the largest chemical shift perturbation by amantadine. The chemical shift constraints lead to a monomer structure with a small kink of the helical axis at Gly34. A tetramer model is then constructed using the helix tilt angle and several interhelical distances previously measured on unoriented bilayer samples. This tetramer model differs from the solution and crystal structures in terms of the openness of the N-terminus of the channel, the constriction at Ser31, and the side-chain conformations of Trp41, a residue important for channel gating. Moreover, the tetramer model suggests that Ser31 may interact with amantadine amine via hydrogen bonding. While the apo and drug-bound M2TMP have similar average structures, the complexed peptide has much narrower linewidths at physiological temperature, indicating drug-induced changes of the protein dynamics in the membrane. Further, at low temperature, several residues show narrower lines in the complexed peptide than the apo peptide, indicating that amantadine binding reduces the conformational heterogeneity of specific residues. The differences of the current solid-state NMR structure of the bilayer-bound M2TMP from the detergent-based M2 structures suggest that the M2 conformation is sensitive to the environment, and care must be taken when interpreting structural findings from non-bilayer samples.  相似文献   

14.
Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X = 0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids.  相似文献   

15.
We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from 15N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are α-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. 15N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.  相似文献   

16.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage.  相似文献   

17.
Permeabilization of the phospholipid membrane, induced by the antibiotic peptides zervamicin IIB (ZER), ampullosporin A (AMP) and antiamoebin I (ANT) was investigated in a vesicular model system. Membrane-perturbing properties of these 15/16 residue peptides were examined by measuring the K+ transport across phosphatidyl choline (PC) membrane and by dissipation of the transmembrane potential. The membrane activities are found to decrease in the order ZER > AMP >> ANT, which correlates with the sequence of their binding affinities. To follow the insertion of the N-terminal Trp residue of ZER and AMP, the environmental sensitivity of its fluorescence was explored as well as the fluorescence quenching by water-soluble (iodide) and membrane-bound (5- and 16-doxyl stearic acids) quenchers. In contrast to AMP, the binding affinity of ZER as well as the depth of its Trp penetration is strongly influenced by the thickness of the membrane (diC16:1PC, diC18:1PC, C16:0/C18:1PC, diC20:1PC). In thin membranes, ZER shows a higher tendency to transmembrane alignment. In thick membranes, the in-plane surface association of these peptaibols results in a deeper insertion of the Trp residue of AMP which is in agreement with model calculations on the localization of both peptide molecules at the hydrophilic-hydrophobic interface. The observed differences between the membrane affinities/activities of the studied peptaibols are discussed in relation to their hydrophobic and amphipathic properties.  相似文献   

18.
We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane α-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.  相似文献   

19.
Biologically important peptides such as the Alzheimer peptide Abeta(1-40) display a reversible random coil <==>beta-structure transition at anionic membrane surfaces. In contrast to the well-studied random coil left arrow over right arrow alpha-helix transition of amphipathic peptides, there is a dearth on information on the thermodynamic and kinetic parameters of the random coil left arrow over right arrow beta-structure transition. Here, we present a new method to quantitatively analyze the thermodynamic parameters of the membrane-induced beta-structure formation. We have used the model peptide (KIGAKI)(3) and eight analogues in which two adjacent amino acids were substituted by their d-enantiomers. The positions of the d,d pairs were shifted systematically along the three identical segments of the peptide chain. The beta-structure content of the peptides was measured in solution and when bound to anionic lipid membranes with circular dichroism spectroscopy. The thermodynamic binding parameters were determined with isothermal titration calorimetry and the binding isotherms were analysed by combining a surface partition equilibrium with the Gouy-Chapman theory. The thermodynamic parameters were found to be linearly correlated with the extent of beta-structure formation. beta-Structure formation at the membrane surface is characterized by an enthalpy change of DeltaH(beta)=-0.23 kcal/mol per residue, an entropy change of DeltaS(beta)=-0.24 cal/mol K residue and a free energy change of DeltaG(beta)=-0.15 kcal/mol residue. An increase in temperature induces an unfolding of beta-structure. The residual free energy of membrane-induced beta-structure formation is close to that of membrane-induced alpha-helix formation.  相似文献   

20.
The binding of the antimicrobial peptides temporins B and L to supported lipid bilayer (SLB) model membranes composed of phosphatidylcholine and phosphatidylglycerol (4:1, mol/mol) caused the formation of fibrillar protrusions, visible by fluorescent microscopy of both a fluorescent lipid analog and a labeled peptide. Multicolor imaging at low peptide-to-lipid ratios (P/L < approximately 1:5) revealed an initial in-plane segregation of membrane-bound peptide and partial exclusion of lipid from the peptide-enriched areas. Subsequently, at higher P/L numerous flexible lipid fibrils were seen growing from the areas enriched in lipid. The fibrils have diameters <250 nm and lengths of up to approximately 1 mm. Fibril formation reduces the in-plane heterogeneity and results in a relatively even redistribution of bound peptide over the planar bilayer and the fibrils. Physical properties of the lipid fibrils suggest that they have a tubular structure. Our data demonstrate that the peptide-lipid interactions alone can provide a driving force for the spontaneous membrane shape transformations leading to tubule outgrowth and elongation. Further experiments revealed the importance of positive curvature strain in the tubulation process as well as the sufficient positive charge on the peptide (>/=+2). The observed membrane transformations could provide a simplified in vitro model for morphogenesis of intracellular tubular structures and intercellular connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号