首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A direct physical interaction of the prion protein isoforms is a key element in prion conversion. Which sites interact first and which parts of PrPc are converted subsequently is presently not known in detail. We hypothesized that structural changes induced by PrPSc interaction occur in more than one interface and subsequently propagate within the PrPC substrate, like epicenters of structural changes. To identify potential interfaces we created a series of systematically-designed mutant PrPs and tested them in prion-infected cells for dominant-negative inhibition (DNI) effects. This showed that mutant PrPs with deletions in the region between first and second α-helix are involved in PrP-PrP interaction and conversion of PrPC into PrPSc. Although some PrPs did not reach the plasma membrane, they had access to the locales of prion conversion and PrPSc recycling using autophagy pathways. Using other series of mutant PrPs we already have identified additional sites which constitute potential interaction interfaces. Our approach has the potential to characterize PrP-PrP interaction sites in the context of prion-infected cells. Besides providing further insights into the molecular mechanisms of prion conversion, this data may help to further elucidate how prion strain diversity is maintained.  相似文献   

2.
《朊病毒》2013,7(5):430-432
It has been described that the breakdown of β-sheets in PrPSc by denaturation results in loss of infectivity and PK-sensitivity, suggesting a relationship between the structure and PK-resistance. It is also known that an important fraction of total PrPSc is PK-sensitive and can be isolated by the method we already described. Consequently, we decided to employ the PK-sensitive fraction of PrPSc as a potential and useful tool for structural studies. Thus, two essential questions were addressed in our recent article. First, the difference in the infectivity between the sensitive and resistant fractions and second, whether sensitive and resistant PrPSc shared the same conformation or were only different size multimers with the same basic conformation. Here we discuss our latest data in light of recent infectivity studies and their possible implications on the conformation of the prion.  相似文献   

3.
Propagation of the scrapie isoform of the prion protein (PrP(Sc)) depends on the expression of endogenous cellular prion (PrP(C)). During oral infection, PrP(Sc) propagates, by conversion of the PrP(C) to PrP(Sc), from the gastrointestinal tract to the nervous system. Intestinal epithelium could serve as the primary site for PrP(C) conversion. To investigate PrP(C) sorting in epithelia cells, we have generated both a green fluorescent protein (EGFP) or hemagglutinin (HA) tagged human PrP(C) (hPrP(C)). Combined molecular, biochemical, and single living polarized cell imaging characterizations suggest that hPrP(C) is selectively targeted to the apical side of Madin-Darby canine kidney (MDCKII) and of intestinal epithelia (Caco2) cells.  相似文献   

4.
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrPC) is required for prion replication, the influence of PrPC abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrPC was overexpressed. Tg(MoPrP)4112 mice overexpressing PrPC supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrPC-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrPC is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrPSc amplification by using concentrated PrPC source and expands the use of this methodology.  相似文献   

5.
The association between caprine PrP gene polymorphisms and its susceptibility to scrapie has been investigated in current years. As the ORF of the PrP gene is extremely erratic in different breeds of goats, we studied the PrP gene polymorphisms in 80 goats which belong to 11 Pakistani indigenous goat breeds from all provinces of Pakistan. A total of 6 distinct polymorphic sites (one novel) with amino acid substitutions were identified in the PrP gene which includes 126 (A -> G), 304 (G -> T), 379 (A -> G), 414 (C -> T), 428 (A -> G) and 718 (C -> T). The locus c.428 was found highly polymorphic in all breeds as compare to other loci. On the basis of these PrP variants NJ phylogenetic tree was constructed through MEGA6.1 which showed that all goat breeds along with domestic sheep and Mauflon sheep appeared as in one clade and sharing its most recent common ancestors (MRCA) with deer species while Protein analysis has shown that these polymorphisms can lead to varied primary, secondary and tertiary structure of protein. Based on these polymorphic variants, genetic distance, multidimensional scaling plot and principal component analyses revealed the clear picture regarding greater number of substitutions in cattle PrP regions as compared to the small ruminant species. In particular these findings may pinpoint the fundamental control over the scrapie in Capra hircus on genetic basis.  相似文献   

6.
The 37-kDa laminin receptor precursor/67-kDa laminin receptor (LRP/LR, also known as ribosomal protein SA, RPSA) has been reported to be involved in cancer development and prion internalization. Previous studies have shown that the LRP/LR is expressed in a wide variety of tissues. In particular, expression of LRP/LR mRNA may be closely related to the degree of PrPSc propagation. This study presents a detailed investigation of the LRP/LR mRNA expression levels in eleven normal ovine tissues. Using real-time quantitative PCR, the highest LRP/LR expression was found in neocortex (p < 0.05). Slightly lower levels were found in the heart and obex. Intermediate levels were seen in hippocampus, cerebellum, spleen, thalamus, mesenteric lymph node, and the lowest levels were present in liver, kidney, and lung. In general, the LRP/LR mRNA levels were much higher in neuronal tissues than in peripheral tissues. The observation that differences in LRP/LR mRNA expression levels are consistent with the corresponding variation in PrPSc accumulation suggests that the 37-kDa/67-kDa laminin receptor may be involved in the regulation of PrPSc propagation.  相似文献   

7.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that can affect North American cervids (deer, elk, and moose). Using a novel in vitro conversion system based on incubation of prions with normal brain homogenates, we now report that PrPCWD of elk can readily induce the conversion of normal cervid PrP (PrPC) molecules to a protease-resistant form, but is less efficient in converting the PrPC of other species, such as human, bovine, hamster, and mouse. However, when substrate brain homogenates are partially denatured by acidic conditions (pH 3.5), PrPCWD-induced conversion can be greatly enhanced in all species. Our results demonstrate that PrPC from cervids (including moose) can be efficiently converted to a protease-resistant form by incubation with elk CWD prions, presumably due to sequence and structural similarities between these species. Moreover, partial denaturation of substrate PrPC can apparently overcome the structural barriers between more distant species.  相似文献   

8.
Cell based models used for the study of prion diseases have traditionally employed mouse-adapted strains of sheep scrapie prions. To date, attempts to generate human prion propagation in cell culture have been unsuccessful. Rabbit kidney epithelial cells (RK13) are permissive to infection with prions from a variety of species upon expression of cognate PrP transgenes. We explored RK13 cells expressing human PrP for their utility as a cell line capable of sustaining infection with human prions. RK13 cells processed exogenously expressed human PrP similarly to exogenously expressed mouse PrP but were not permissive to infection when exposed to sporadic Creutzfeldt-Jakob disease prions. Transmission of the same sporadic Creutzfeldt Jakob disease prions to wild-type mice generated a strain of mouse-adapted human prions, which efficiently propagated in RK13 cells expressing mouse PrP, demonstrating these cells are permissive to infection by mouse-adapted human prions. Our observations underscore the likelihood that, in contrast to prions derived from non-human mammals, additional unidentified cofactors or subcellular environment are critical for the generation of human prions.  相似文献   

9.
Abnormalities in Stress Proteins in Prion Diseases   总被引:1,自引:0,他引:1  
1. Prion diseases include kuru, Creutzfeldt–Jakob disease (CJD), Gerstmann–Sträussler–Scheinker disease (GSS), and fatal familia insomnia (FFI) of humans, as well as scrapie and bovine spongiform encephalopathy (BSE) of animals.2. All these disorders involve conversion of the normal, cellular prion protein (PrPC) into the corresponding scrapie isoform (PrPSc). PrPC adopts a structure rich in -helices and devoid of -sheet, in contrast to PrPSc, which has a high -sheet content and is resistant to limited digestion by proteases. That a conformational transition features in the conversion of PrPC into PrPSc implies that prion diseases are disorders of protein conformation.3. This concept has been extended by our studies with heat shock proteins (Hsp), many of which are thought to function as molecular chaperones. We found that the induction of some Hsps but not others was profoundly altered in scrapie-infected cells and that the distribution of Hsp73 is unusual in these cells.4. Whether the conversion of PrPC into PrPSc is assisted by molecular chaperones, or if the accumulation of the abnormally folded PrPSc is complexed with Hsps remains to be established.  相似文献   

10.
蛋白质感染颗粒(PrP)的错误折叠被认为是引起一些神经退化性疾病的主因,但其正常构象(PrPC)的功能却一直不为人所知.近年来研究发现,在正常细胞中,尤其是脑细胞中,细胞膜PrPC可通过内吞作用进入细胞质而将Cu2+载运至SOD1,从而参与调节SOD1 的活性及细胞铜代谢.另有研究表明,Cu2+对于PrPSc(错误构象)的蛋白水解酶K抗性的恢复及不同“病株”的形成也有很重要的作用.  相似文献   

11.
Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system.  相似文献   

12.
An abnormal isoform of prion protein (PrPSc), which is composed of the same amino acids as cellular PrP (PrPC) and has proteinase K (PK)-resistance, hypothetically converts PrPC into PrPSc. To investigate the region important for PrPSc production, we examined the levels of PrPSc in PrP gene-deficient cells (HpL3-4) expressing PrPC deleted of various regions including the octapeptide repeat region (OR) or hydrophobic region (HR). After Chandler or Obihiro prion infection, PrPSc was produced in HpL3-4 cells expressing wild-type PrPC or PrPC deleted of HR at an early stage and further reduced to below the detectable level, whereas cells expressing PrPC deleted of OR showed no PrPSc production. The results suggest that OR of PrPC is required for the early step of efficient PrPSc production.  相似文献   

13.
A series of GN8 derivatives were synthesized from various diamines, carboxylic acid derivatives, and nitrogen nucleophiles, and their antiprion activity was tested in TSE-infected mouse neuronal cells. We found that two ethylenediamine units, hydrophobic substituents on the nitrogen atoms, and the diphenylmethane scaffold were essential structural features responsible for the activity. Seven derivatives bearing substituents at the benzylic position exhibited an improved antiprion activity with the IC50 values of 0.51-0.83 μM. Conformational analysis of model compounds suggested that the introduction of the substituent at the benzylic position restricted the conformational variability of the diphenylmethane unit.  相似文献   

14.
Cellular prion protein, PrP(C), is essential for the development of prion diseases where it is considered to be a substrate for the formation of the disease-associated conformer, PrP(Sc). In sheep, PrP(C) is abundant in neuronal tissue and is also found at lower concentrations in a range of non-neuronal tissues, including mammary gland. Here, we demonstrate the presence of soluble PrP(C) in the non-cellular, non-lipid fraction of clarified ovine milk. Compared with brain-derived PrP(C), ovine milk PrP(C) displays an increased electrophoretic mobility. Ovine milk PrP(C) is mainly present as three species that differ in the extent of their N-linked glycosylation, with glycoform profiles varying among animals. Similar PrP(C) species are also present in fresh and commercial homogenised/pasteurised bovine milk, with additional N-terminal PrP(C) fragments detectable in ruminant milk and commercial milk products.  相似文献   

15.
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.  相似文献   

16.
The hallmarks of prion diseases are the conversion of the normal prion into an abnormal protease resistant isoform and its brain accumulation. Purification of the native abnormal prion isoform for biochemical and biophysical studies has been hampered by poor recovery from brain tissue. An epithelial cell transfected with the ovine VRQ allele prion, called Rov9, has been used to select prion high-producer cells by flow cytometry. The representative clone 4 described here produced 6.2 microg of cellular prion protein per mg of total protein extract, representing 8- to 10-fold the amount produced by the Rov9 parental cells. After exposure to the scrapie agent (PG128/98), clone 4 produced 2.6 microg of abnormal isoform per mg of total protein. When infected clone 4 cell cultures were treated with tunicamycin, 80% of the abnormal isoform was deglycosylated. The infectivity of the prions produced in clone 4 cultures was confirmed in a mouse bioassay. Such high-producer clones represent new tools for producing large amounts of glycosylated and/or non-glycosylated PrP(Sc) and for a powerful screening of clinical samples' infectivity.  相似文献   

17.
Prions exist as strains, which are thought to reflect PrPSc conformational variants. Prion strains can mutate and it has been proposed that prion mutability depends on an intrinsic heterogeneity of prion populations that would behave as quasispecies. We investigated in vitro prion mutability of 2 strains, by following PrPSc variations of populations serially propagated in PMCA under constant environmental pressure. Each strain was propagated either at low dilution of the seed, i.e., by large population passages, or at limiting dilution, mimicking bottleneck events. In both strains, PrPSc conformational variants were identified only after large population passages, while repeated bottleneck events caused a rapid decline in amplification rates. These findings support the view that mutability is an intrinsic property of prions.  相似文献   

18.
PrPSc is known to elicit no specific immune response and the immune cells are suspected to support its accumulation. In the present study, we investigated the response of some immune cell types to PrPSc to characterize an observed early transient accumulation of PrPSc. After cells were treated with PrPSc-brain homogenate, PrPSc was transiently accumulated for the first 8–12 h post-exposure then completely cleared by the 5th day of the experiment. The accumulated PrPSc was not a de novo product of the cell PrPC. Further investigation of this phenomenon revealed some potential factors influencing it. These factors included cholesterol homeostasis, temperature, the degradation power of the cell and the availability of sufficient PrPC. Our in vitro results suggest that immune cells, especially macrophages are potential risk factors for the accumulation and intercellular spread of PrPSc if the complete clearance of PrPSc were not fulfilled.  相似文献   

19.
《朊病毒》2013,7(2):124-133
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurological diseases that can be transmitted through a number of different routes. A wide range of mammalian species are affected by the disease. After peripheral exposure, some TSE agents accumulate in lymphoid tissues at an early stage of disease prior to spreading to the nerves and the brain. Much research has focused on identifying the cells and molecules involved in the transmission of TSE agents from the site of exposure to the brain and several crucial cell types have been associated with this process. The identification of the key cells that influence the different stages of disease transmission might identify targets for therapeutic intervention. This review highlights the involvement of mononuclear phagocytes in TSE disease. Current data suggest these cells may exhibit a diverse range of roles in TSE disease from the transport or destruction of TSE agents in lymphoid tissues, to mediators or protectors of neuropathology in the brain.  相似文献   

20.
Exosomes are small membranous vesicles secreted by a number of cell types and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of multivesicular bodies (MVB) to form intraluminal vesicles (ILV). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell–cell signalling, removal of unwanted proteins, and the transfer of pathogens between cells, such as HIV-1. Another such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Interestingly, this work is mirrored by studies on another protein involved in neurodegenerative disease, the amyloid precursor protein (APP) which is associated with Alzheimer’s disease (AD). Recent work has found APP proteolytic fragments in association with exosomes, suggesting a common pathway previously unknown for proteins associated with neurodegenerative diseases. This review will be discussing the current literature regarding the role of exosomes in secretion of the proteins, PrP and APP, and the subsequent implications for neurodegenerative disease. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号