首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non-toxic can, in principle, be rationalized. Armed with supercomputers and accurate force fields for biomolecular interactions, we can now investigate phenomena that span hundreds of nanoseconds. Although the phenomena involved in antimicrobial activity, (i.e., diffusion of peptides, interaction with lipid layers, secondary structure attainment, possible surface aggregation, possible formation of pores, and destruction of the lipid layer integrity) collectively span time scales still prohibitively long for classical mechanics simulations, it is now feasible to investigate the initial approach of single peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential.  相似文献   

2.
Antimicrobial peptides (AMPs) are naturally occurring promising candidates which can be used as antibiotics against a wide variety of bacteria. The key component for using them as a potent antibiotic is that their mechanism of action is less prone to bacterial resistance. However, the molecular details of their mechanism of action is not yet fully understood. In this study, we try to shed light on the mode of action of AMPs, possible reason behind it, and their interaction with lipid bilayers through experimental as well as molecular dynamics (MD) simulation studies. The focal of our study was Human beta defensin 3 (hBD-3) which is a naturally occurring AMP. We chose three derivatives of hBD-3, namely CHRG01, KSR, and KLR for the detailed analysis presented in this study. These three peptides are evaluated for their antibacterial potency, secondary structure analysis and mechanism of action. The experimental results reveal that these peptides are active against gram positive as well as gram negative bacteria and kill bacteria by forming membrane pores. The MD simulation results correlate well with the antibacterial activity and shed light into the early membrane insertion dynamics. Moreover, the specific amino acids responsible for membrane disruptions are also identified from the MD simulations. Understanding the molecular level interaction of individual amino acids with the lipid bilayer will greatly help in the design of more efficient antimicrobial peptides.  相似文献   

3.
We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.  相似文献   

4.
Cationic antimicrobial peptides (AMPs) are emerging as effective alternatives to conventional therapeutics that are used against the ever-rising number of multidrug-resistant microbial strains. Most studies established the peptide's amphipathicity and electrostatic interaction with the membrane as the basis for their antimicrobial effect. However, the interplay between the stoichiometric ratio of lipids, local geometry, diverse physicochemical properties of the host membranes and antimicrobial peptide efficacy is still poorly understood. In the present study, we investigate the mechanism of interaction of VG16KRKP (VARGWKRKCPLFGKGG), a novel AMP designed from the dengue-virus fusion peptide, with bacterial/fungal membrane mimics. Fluorescence based dye leakage assays show that membrane disruption is not solely induced by electrostatic interaction but also driven by stoichiometric ratio of the lipids that dictates the net surface charge, amount of lipid defects and local geometry of the membrane. Solid-state 14N and 31P NMR experiments show that peptide interaction results in lowering of lipid order around both the headgroups and acyl chains, suggesting deep peptide insertion. Further, an increase or decrease in membrane stability of the host membrane was observed in differential scanning calorimetry (DSC) thermograms, dictated by the overall stoichiometric ratio of the lipids and the sterol present. In general, our results help understand the diverse fates of host membranes against an antimicrobial peptide.  相似文献   

5.
Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the α-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.  相似文献   

6.
A large variety of antimicrobial peptides have been shown to act, at least in vitro, by poration of the lipid membrane. The nanometre size of these pores, however, complicates their structural characterization by experimental techniques. Here we use molecular dynamics simulations, to study the interaction of a specific class of antimicrobial peptides, melittin, with a dipalmitoylphosphatidylcholine bilayer in atomic detail. We show that transmembrane pores spontaneously form above a critical peptide to lipid ratio. The lipid molecules bend inwards to form a toroidally shaped pore but with only one or two peptides lining the pore. This is in strong contrast to the traditional models of toroidal pores in which the peptides are assumed to adopt a transmembrane orientation. We find that peptide aggregation, either prior or after binding to the membrane surface, is a prerequisite to pore formation. The presence of a stable helical secondary structure of the peptide, however is not. Furthermore, results obtained with modified peptides point to the importance of electrostatic interactions in the poration process. Removing the charges of the basic amino-acid residues of melittin prevents pore formation. It was also found that in the absence of counter ions pores not only form more rapidly but lead to membrane rupture. The rupture process occurs via a novel recursive poration pathway, which we coin the Droste mechanism.  相似文献   

7.
L Wang  Q Liu  JC Chen  YX Cui  B Zhou  YX Chen  YF Zhao  YM Li 《Biological chemistry》2012,393(7):641-646
Abstract Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.  相似文献   

8.
The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena.  相似文献   

9.
Buforin II is a histone-derived antimicrobial peptide that readily translocates across lipid membranes without causing significant membrane permeabilization. Previous studies showed that mutating the sole proline of buforin II dramatically decreases its translocation. As well, researchers have proposed that the peptide crosses membranes in a cooperative manner by forming transient toroidal pores. This paper reports molecular dynamics simulations designed to investigate the structure of buforin II upon membrane entry and evaluate whether the peptide is able to form toroidal pore structures. These simulations showed a relationship between protein–lipid interactions and increased structural deformations of the buforin N-terminal region promoted by proline. Moreover, simulations with multiple peptides show how buforin II can embed deeply into membranes and potentially form toroidal pores. Together, these simulations provide structural insight into the translocation process for buforin II in addition to providing more general insight into the role proline can play in antimicrobial peptides.  相似文献   

10.
Antimicrobial peptides, isolated from the dorsal glands of Australian tree frogs, possess a wide spectrum of biological activity and some are specific to certain pathogens. These peptides have the capability of disrupting bacterial membranes and lysing lipid bilayers. This study focused on the following amphibian peptides: (1) aurein 1.2, a 13-residue peptide; (2) citropin 1.1, with 16 residues; and (3) maculatin 1.1, with 21 residues. The antibiotic activity and structure of these peptides have been studied and compared and possible mechanisms by which the peptides lyse bacterial membrane cells have been proposed. The peptides adopt amphipathic -helical structures in the presence of lipid micelles and vesicles. Specifically 15N-labelled peptides were studied using solid-state NMR to determine their structure and orientation in model lipid bilayers. The effect of these peptides on phospholipid membranes was determined by 2H and 31P solid-state NMR techniques in order to understand the mechanisms by which they exert their biological effects that lead to the disruption of the bacterial cell membrane. Aurein 1.2 and citropin 1.1 are too short to span the membrane bilayer while the longer maculatin 1.1, which may be flexible due to the central proline, would be able to span the bilayer as a transmembrane -helix. All three peptides had a peripheral interaction with phosphatidylcholine bilayers and appear to be located in the aqueous region of the membrane bilayer. It is proposed that these antimicrobial peptides have a "detergent"-like mechanism of membrane lysis.This paper was submitted as a record of the 2002 Australian Biophysical Society  相似文献   

11.
For cationic antimicrobial peptides to become useful therapeutic agents, it is important to understand their mechanism of action. To obtain high resolution data, this involves studying the structure and membrane interaction of these peptides in tractable model bacterial membranes rather than directly utilizing more complex bacterial surfaces. A number of lipid mixtures have been used as bacterial mimetics, including a range of lipid headgroups, and different ratios of neutral to negatively charged headgroups. Here we examine how the structure and membrane interaction of aurein 2.2 and some of its variants depend on the choice of lipids, and how these models correlate with activity data in intact bacteria (MICs, membrane depolarization). Specifically, we investigated the structure and membrane interaction of aurein 2.2 and aurein 2.3 in 1:1 cardiolipin/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (CL/POPG) (mol/mol), as an alternative to 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POPG and a potential model for Gram positive bacteria such as S. aureus. The structure and membrane interaction of aurein 2.2, aurein 2.3, and five variants of aurein 2.2 were also investigated in 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG (mol/mol) lipids as a possible model for other Gram positive bacteria, such as Bacillus cereus. Solution circular dichroism (CD) results demonstrated that the aurein peptides adopted α-helical structure in all lipid membranes examined, but demonstrated a greater helical content in the presence of POPE/POPG membranes. Oriented CD and 31P NMR results showed that the aurein peptides had similar membrane insertion profiles and headgroup disordering effects on POPC/POPG and CL/POPG bilayers, but demonstrated reduced membrane insertion and decreased headgroup disordering on mixing with POPE/POPG bilayers at low peptide concentrations. Since the aurein peptides behaved very differently in POPE/POPG membrane, minimal inhibitory concentrations (MICs) of the aurein peptides in B. cereus strain C737 were determined. The MIC results indicated that all aurein peptides are significantly less active against B. cereus than against S. aureus and S. epidermidis. Overall, the data suggest that it is important to use a relevant model for bacterial membranes to gain insight into the mode of action of a given antimicrobial peptide in specific bacteria.  相似文献   

12.
Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the alpha-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.  相似文献   

13.
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.  相似文献   

14.
Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at ‘a’ and/or ‘d’ position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its ‘a’ and ‘d’ positions with d-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its d-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show significant scope for designing antimicrobial agents with selectivity towards microorganisms by substituting leucine residues at ‘a’ and/or ‘d’ positions of a leucine zipper sequence of an antimicrobial peptide with different amino acids.  相似文献   

15.
Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this review, we will summarize high-resolution structural and dynamic findings towards the understanding of the structure–activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane.  相似文献   

16.
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.  相似文献   

17.
Diversity of antimicrobial peptides and their mechanisms of action   总被引:31,自引:0,他引:31  
Antimicrobial peptides encompass a wide variety of structural motifs. Many peptides have alpha-helical structures. The majority of these peptides are cationic and amphipathic but there are also hydrophobic alpha-helical peptides which possess antimicrobial activity. In addition, some beta-sheet peptides have antimicrobial activity and even antimicrobial alpha-helical peptides which have been modified to possess a beta-structure retain part of their antimicrobial activity. There are also antimicrobial peptides which are rich in a certain specific amino acid such as Trp or His. In addition, antimicrobial peptides exist with thio-ether rings, which are lipopeptides or which have macrocyclic Cys knots. In spite of the structural diversity, a common feature of the cationic antimicrobial peptides is that they all have an amphipathic structure which allows them to bind to the membrane interface. Indeed, most antimicrobial peptides interact with membranes and may be cytotoxic as a result of disturbance of the bacterial inner or outer membranes. Alternatively, a necessary but not sufficient property of these peptides may be to be able to pass through the membrane to reach a target inside the cell. The interaction of these peptides with biological membranes is not just a function of the peptide but is also modulated by the lipid components of the membrane. It is not likely that this diverse group of peptides has a single mechanism of action, but interaction of the peptides with membranes is an important requirement for most, if not all, antimicrobial peptides.  相似文献   

18.
Three peptides, YGAA[KKAAKAA](2) (AKK), KLFKRHLKWKII (SC4), and YG[AKAKAAKA](2) (KAK), were conjugated with lauric acid and tested for the effect on their structure, antibacterial activity, and eukaryotic cell toxicity. The conjugated AKK and SC4 peptides showed increased antimicrobial activity relative to unconjugated peptides, but the conjugated KAK peptide did not. The circular dichroism spectrum of AKK showed a significantly larger increase in its alpha-helical content in the conjugated form than peptide KAK in a solution containing phosphatidylethanolamine/phosphotidylglycerol vesicles, which mimics bacterial membranes. The KAK and AKK peptides and their corresponding fatty acid conjugates showed little change in their structure in the presence of phosphatidylcholine vesicles, which mimic the cell membrane of eukaryotic cells. The hemolytic activity of the KAK and AKK peptides and conjugates was low. However, the SC4 fatty acid conjugate showed a large increase in hemolytic activity and a corresponding increase in helical content in the presence of phosphatidylcholine vesicles. These results support the model of antimicrobial peptide hemolytic and antimicrobial activity being linked to changes in secondary structure as the peptides interact with lipid membranes. Fatty acid conjugation may improve the usefulness of peptides as antimicrobial agents by enhancing their ability to form secondary structures upon interacting with the bacterial membranes.  相似文献   

19.
Hsu JC  Yip CM 《Biophysical journal》2007,92(12):L100-L102
Identifying the mechanisms responsible for the interaction of peptides with cell membranes is critical to the design of new antimicrobial peptides and membrane transporters. We report here the results of a computational simulation of the interaction of the 13-residue peptide indolicidin with single-phase lipid bilayers of dioleoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylglycerol, and distearoylphosphatidylglycerol. Ensemble analysis of the membrane-bound peptide revealed that, in contrast to the extended, linear backbone structure reported for indolicidin in sodium dodecyl sulphate detergent micelles, the peptide adopts a boat-shaped conformation in both phosphatidylglycerol and phosphatidylcholine lipid bilayers, similar to that reported for dodecylphosphocholine micelles. In agreement with fluorescence and NMR experiments, simulations confirmed that the peptide localizes in the membrane interface, with the distance between phosphate headgroups of each leaflet being reduced in the presence of indolicidin. These data, along with a concomitant decrease in lipid order parameters for the upper-tail region, suggest that indolicidin binding results in membrane thinning, consistent with recent in situ atomic force microscopy studies.  相似文献   

20.
Synthetic mimics of antimicrobial peptides   总被引:1,自引:0,他引:1  
Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号