首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A requisite for efficacious host defense against pathogens and predators has prioritized evolution of effector molecules thereof. A recent multidimensional analysis of physicochemical properties revealed a novel, unifying structural signature among virtually all classes of cysteine-containing antimicrobial peptides. This motif, termed the gamma-core, is seen in host defense peptides from organisms spanning more than 2.6 billion years of evolution. Interestingly, many toxins possess the gamma-core signature, consistent with discoveries of their direct antimicrobial activity. Many microbicidal chemokines (kinocidins) likewise contain iterations of the gamma-core motif, reconciling their antimicrobial efficacy. Importantly, these polypeptide classes have evolved to target and modulate biomembranes in protecting respective hosts against unfavorable interactions with potential pathogens or predators. Extending on this concept, the current report addresses the hypothesis that antimicrobial peptides, kinocidins, and polypeptide toxins are structurally congruent and share a remarkably close phylogenetic relationship, paralleling their roles in host-pathogen relationships. Analyses of their mature amino acid sequences demonstrated that cysteine-stabilized antimicrobial peptides, kinocidins, and toxins share ancient evolutionary relatedness stemming from early precursors of the gamma-core signature. Moreover, comparative 3-D structure analysis revealed recurring iterations of antimicrobial peptide gamma-core motifs within kinocidins and toxins. However, despite such congruence in gamma-core motifs, the kinocidins diverged in overall homology from microbicidal peptides or toxins. These findings are consistent with observations that chemokines are not toxic to mammalian cells, in contrast to many antimicrobial peptides and toxins. Thus, specific functions of these molecular effectors may be governed by specific configurations of structural modules associated with a common gamma-core motif. These concepts are consistent with the hypothesis that the gamma-core is an archetype determinant in polypeptides that target or regulate with biological membranes, with specific iterations optimized to unique or cognate host defense contexts. Quantitative and qualitative data suggest these protein families emerged through both parallel and divergent processes of modular evolution. Taken together, the current and prior findings imply that the gamma-core motif contributes to conserved structures and functions of host defense polypeptides. The presence of this unifying molecular signature in otherwise diverse categories of membrane-active host defense peptides implies an ancient and essential role for such a motif in effector molecules governing host-pathogen relationships.  相似文献   

2.
Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure–activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.  相似文献   

3.
Endodontic treatment is mainly based on root canal disinfection and its failure may be motivated by microbial resistance. Endodontic therapy can be benefitted by host defense peptides (HDPs), which are multifunctional molecules that act against persistent infection and inflammation. This study aimed to evaluate the antimicrobial, cytotoxic and immunomodulatory activity of several HDPs, namely clavanin A, clavanin A modified (MO) and LL-37, compared to intracanal medication Ca(OH)2. HDPs and Ca(OH)2 were evaluated by: (1) antimicrobial assays against Candida albicans and Enterococcus faecalis, (2) cytotoxicity assays and (3) cytokine tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1α, IL-6, IL-10 and IL-12 and nitric oxide (NO) production by RAW 264.7 cells incubated with or without heat-killed (HK) C. albicans or E. faecalis combined or not with interferon-γ. The minimum inhibitory concentration (MIC) was established only for E. faecalis (LL-37, 57 μM). Considering cytotoxicity, clavanin MO was able to reduce cell viability in many groups and demonstrated lowest LC50. The Ca(OH)2 up-regulated the production of MCP-1, TNF-α, IL-12 and IL-6 and down-regulated IL-1α, IL-10 and NO. Clavanins up-regulated the TNF-α and NO and down-regulated IL-10 production. LL-37 demonstrated up-regulation of IL-6 and TNF-α production and down-regulation in IL-10 and NO production. In conclusion, LL-37 demonstrated better antibacterial potential. In addition, Ca(OH)2 demonstrated a proinflammatory response, while the HDPs modulated the inflammatory response from non-interference with the active cytokines in the osteoclastogenesis process, probably promoting the health of periradicular tissues.  相似文献   

4.
Previous studies have implicated antimicrobial peptides in the host defense of the mammalian intestinal and respiratory tract. The aim of the present study has been to characterize further the expression of these molecules in non-epithelial cells of the human pulmonary and digestive systems by detailed immunohistochemical analysis of the small and large bowel and of the large airways and lung parenchyma. Additionally, cells obtained from bronchoalveolar lavage were analyzed by fluorescent activated cell sorting and immunostaining of cytospin preparations. hBD-1, hBD-2, and LL-37 were detected in lymphocytes and macrophages in the large airways, lung parenchyma, duodenum, and colon. Lymphocytes positive for the peptides revealed a staining pattern and distribution that largely matched that of CD3-positive and CD8-positive T-cells. Macrophages with positive staining for the antimicrobial peptides also stained positively for CD68 and CD74. In view of the morphology of the LL-37-positive and hBD-2-positive mucosal lymphocytes, they are probably also B-cells. Thus, antimicrobial peptides of the defensin and cathelicidin families are present in a variety of non-epithelial cells of mucosal organs. These findings confirm that antimicrobial peptides have multiple functions in the biology of the mucosa of these organs. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Ba 1641/5–1 and Ba 1641/6–1)  相似文献   

5.
《Genomics》2021,113(6):3851-3863
Host defense peptides are promising candidates for the development of novel antibiotics. To realize their therapeutic potential, high levels of target selectivity is essential. This study aims to identify factors governing selectivity via the use of the random forest algorithm for correlating peptide sequence information with their bioactivity data. Satisfactory predictive models were achieved from out-of-bag prediction that yielded accuracies and Matthew's correlation coefficients in excess of 0.80 and 0.57, respectively. Model interpretation through the use of variable importance metrics and partial dependence plots indicated that the selectivity was heavily influenced by the composition and distribution patterns of molecular charge and solubility related parameters. Furthermore, the three investigated bacterial target species (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) likely had a significant influence on how selectivity was realized as there appears to be a similar underlying selectivity mechanism on the basis of charge-solubility properties (i.e. but which is tailored according to the target in question).  相似文献   

6.
7.
Antimicrobial peptides (AMPs) and mucins are components of airway secretions and both contribute to the innate host defense system. At neutral pH, AMPs are positively charged, mucins negatively. It was the aim of the study to test whether these opposite charges result in interactions between AMPs and mucins. We measured binding of mucins isolated from porcine gastric mucosa to the cathelicidin LL-37 coated to multiwell plates and found that LL-37 electrostatically interacts with mucins. Circular dichroism spectra of the peptide revealed the induction of -helical conformation by mucins. Addition of mucins to solutions of LL-37 significantly decreased the antimicrobial activity of the peptide against Pseudomonas aeruginosa and Streptococcus pneumoniae. We then tested whether LL-37 is bound to mucins in airway secretions from human subjects and found that a significant proportion of the peptide and its propeptide are bound to high molecular weight components. Together these data show that cationic AMPs interact with anionic mucins in airway secretions. Functions of AMPs are modulated by this interaction.  相似文献   

8.
The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review.  相似文献   

9.
Pine cone beetles (Conophthorus spp.) feed and kill immature cones of Pinus species, thereby reducing seed production and seriously impairing reforestation of forest ecosystems. Population variation of Conophthorus reproductive behavior has hampered the development of semiochemical control of these pests. This difficulty is compounded by a lack of taxonomic knowledge and species diagnostic characters. Researchers and managers rely, in part, on host associations and geographic locality for species identifications and these have arguable taxonomic utility. However, host use and/or geographic separation may influence Conophthorus lineage diversification. To improve Conophthorus taxonomy and understand the association of host and geography with lineage diversification, a phylogeny of 43 individuals, including all valid species and a robust sample of C. ponderosae from different hosts, is reconstructed using 785 nucleotides of the 3'-end of the mitochondrial cytochrome oxidase I gene. Thirty trees were recovered in a parsimony analysis and the strict consensus was well resolved and supported by branch support measures. Conophthorus was monophyletic but mitochondrial polyphyly was uncovered for several species. The data also suggested an underestimation of species diversity. Phylogenetically related Conophthorus lineages were significantly associated with geographic proximity but not with host, as indicated by comparisons of character optimized geographic distributions and host associations against randomized distributions of these attributes on the parsimony tree. These results suggest that geographic separation better explains the mode of Conophthorus lineage diversification than does host specialization. Based on these results, researchers and managers of Conophthorus should consider populations as potentially different evolutionary entities until species boundaries are delineated via a robust phylogenetic revision of Conophthorus.  相似文献   

10.
The dimeric cytokine interleukin (IL)-26 belongs to the IL-10 family. Whereas it was originally perceived as a T-helper (Th)17 cytokine, subsequent studies have shown that IL-26 is produced by several populations of leukocytes and structural cells. This cytokine binds to a heterodimeric receptor complex including IL-10R2 and -20R1 (IL-26R) and signals through STAT 1 and 3 to induce the release of chemokines and growth factors. Remarkably, IL-26 directly kills bacteria and inhibits viral replication. The most recent studies on human airways confirm multiple cellular sources in this critical interphase of host defense and demonstrate that stimulation of toll-like receptors (TLR) trigger the release of IL-26. Once released, it exerts a dualistic effect on cytokine production and up-regulates gene expression of IL-26R. It also potentiates chemotaxis and inhibits chemokinesis for neutrophils, thereby facilitating the accumulation of innate effector cells at the site of bacterial stimulation. The high levels of IL-26 in human airways are altered in inflammatory airway disorders such as asthma and chronic obstructive pulmonary disease. Thus, IL-26 emerges as an important mediator, providing direct and indirect actions on microbes, actions that are essential for host defense and inflammation and bears potential as a biomarker of disease.  相似文献   

11.
Antimicrobial polypeptides (AMPPs), consisting of peptides and small proteins with antimicrobial activity, are an integral component of innate immunity. Their often potent properties and widespread prevalence in fish suggests that designing means of manipulating their levels has considerable potential for maintaining or improving fish health. There is evidence that a number of chronic stresses lead to significant downregulation of AMPPs and thus their monitoring could be a highly sensitive measure of health status and risk of an infectious disease outbreak. Conversely, upregulation of AMPP expression could be used to enhance disease resistance in stressful environments, as well as improve the efficacy of traditional antimicrobial drugs. However, further work is required in linking levels of a number of AMPPs to physiological function since, while a number of studies have documented the down- or upregulation of AMPPs via gene expression, relatively few studies have quantitatively examined changes in protein expression. In addition, not all AMPPs appear to be expressed at microbicidal levels in vivo, suggesting that at least some may have functions other than being directly protective. Nonetheless, in fish, there is evidence that some constitutively expressed AMPPs, such as piscidins and histone-like proteins, are expressed at microbicidal levels and that they decline with stress. Furthermore, certain AMPPs derived from hemoglobin-β are upregulated to microbicidal levels after experimental challenge. The likely widespread distribution of these three AMPP groups in fish provides the opportunity to design strategies to greatly improve the health of cultured fish populations.  相似文献   

12.
Lipids such as fatty alcohols, free fatty acids and monoglycerides of fatty acids are known to be potent antimicrobial/microbicidal agents in vitro and to kill enveloped viruses, Gram-positive and Gram-negative bacteria and fungi on contact. For over half a century several studies have tried to answer the question of whether or not lipids play a role in the natural host defense against pathogens. A comprehensive review is given of these studies, particularly concerning infections in skin and in mucosal membranes of the respiratory tract, and of the role of lipids in the antimicrobial activity of breast milk. Based on studies of the microbicidal activities of lipids, both in vitro and in vivo, the possibility of using such lipids as active ingredients in prophylactic and therapeutic dosage forms is considered and examples are given of studies of such pharmaceutical dosage forms in experimental animal models and in clinical trials.  相似文献   

13.
Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine the key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in alpha helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.  相似文献   

14.
石洁  王长军 《微生物学通报》2012,39(1):0090-0098
病原菌对宿主致病是病原菌与宿主复杂相互作用的结果。病原菌与宿主相互作用可造成宿主在细胞、组织及器官不同水平的损伤。病原菌对宿主的致病性及毒力,一方面在于病原菌,另一方面在于宿主因素以及宿主与病原菌的相互作用。病原菌-宿主在细胞水平的相互作用是病原菌感染致病的重要环节。结合本课题组对猪链球菌的研究,从黏附与定殖、侵袭、逃避与扩散等方面概述病原菌逃避宿主细胞防御的机制。  相似文献   

15.
Summary Eighteen populations, composed of four wheat (Triticum aestivum) varieties that were originally mixed together at equal frequencies, were grown for one-to-three generations at two locations. In addition, pure stands of the four varieties were grown in each year. Populations were either exposed to two stripe rust (Puccinia striiformis) races, protected from stripe rust, or exposed to alternating years of diseased and disease-free conditions. Regression of the logit of a variety's frequency versus generation number was used to calculate the relative fitness of each variety in each population. These analyses suggest that the relative fitnesses of the wheat varieties were affected by disease and geographic location and were constant over time. However, frequency-changes of varieties in the mixtures were negatively correlated with their planting frequencies (0.0001 < P < 0.085 in 14 out of 16 cases), suggesting that fitnesses were frequency-dependent in both the presence and absence of disease. We hypothesize that failure to detect frequency-dependence of fitness in the logit analyses was due to a limited number of generations and a limited range of initial variety frequencies. This is supported by data from longer-term studies in the literature that provide evidence for frequency-dependence of fitness in plant mixtures. Analyses of currently available field data suggest that stable equilibria may be a more likely outcome for mixtures of varieties that are more closely related and/or more uniformly adapted to the environment in which they are grown.Paper No. 9820 of the journal series of the Oregon Agricultural Experiment Station.  相似文献   

16.
Bacterial drug resistance is emerging as one of the most significant challenges to human health. Antimicrobial peptides (AMPs), which are produced by many tissues and cell types of invertebrates, insects, and humans, as part of their innate immune system, have attracted considerable interest as alternative antibiotics. Interest in novel mimics of AMPs has increased greatly over the last few years. This report details a new AMP mimic, based on phenylene ethynylene, with improved antimicrobial activity and selectivity. Screening against a large set of bacterial and other organisms demonstrates broad spectrum antimicrobial activity including activity against antibiotic resistant bacterial like methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) as well as activity against yeast (Candida albicans) and fungus (Stachybotrys chartarum). Bacterial resistance development studies using Staphylococcus aureus show a rapid increase in MIC for conventional antibiotics, ciprofloxacin and norfloxacin. In sharp contrast, no change in MIC was observed for the AMP mimic. Cytotoxicity experiments show that the AMP mimic acts preferentially on microbes as opposed to mammalian red blood cells, 3T3 fibroblasts, and HEPG2 cells. In vivo experiments determined the maximum tolerated dose (MTD) to be 10 mg/kg suggesting a therapeutic window is available. These studies indicate that nonpeptidic amphiphilic AMP mimics could be developed as potential new treatments for antibiotic-resistant bacterial infections.  相似文献   

17.
Lauric acid (C12:0) and sapienic acid (C16:1Δ6) derived from human sebaceous triglycerides are potent antimicrobials found at the human skin surface. Long-chain bases (sphingosine, dihydrosphingosine and 6-hydroxysphingosine) are also potent and broad-acting antimicrobials normally present at the skin surface. These antimicrobials are generated through the action of ceramidases on ceramides from the stratum corneum. These natural antimicrobials are thought to be part of the innate immune system of the skin. Exogenously providing these lipids to the skin may provide a new therapeutic option, or could potentially provide prophylaxis in people at risk of infection. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

18.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

19.
20.
The adaptive significance of egg size of skippers (Lepidoptera; Hesperiidae) in Japan was evaluated in relation to the leaf toughness of their major host grasses. The hesperids that fed on tougher grasses laid larger eggs. Hesperids that laid larger eggs were larger in body size, but lower in fecundity. They also had a wider host range. Thus, despite the lower fecundity, hesperids may benefit from large eggs by having a wider host range of larvae. Grass feeders had wider range of host plants than broadleaf feeders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号