首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intracellular trafficking is a determining factor in the transgene expression efficiency of gene vectors. In the present study, the mechanism of the cellular uptake of octaarginine (R8)-modified liposomes, when introduced at 37 degrees C and 4 degrees C, was investigated in living cells. Compared with 37 degrees C, the uptake of R8-liposomes was only slightly reduced at 4 degrees C. Dual imaging of liposomes and plasma membranes revealed that R8-liposomes were internalized by vesicular transport, and partially escaped to the cytosol at the perinuclear region at 37 degrees C. When introduced at 4 degrees C, intracellular liposomes were observed within a specific region close to the plasma membrane, and internalization of the plasma membrane was completely inhibited. Therefore, at 4 degrees C, R8-liposomes appear to enter cells via unique pathway, which is separate and distinct from energy-dependent vesicular transport. The subsequent nuclear delivery of encapsulated pDNA, when introduced at 4 degrees C, was less prominent compared with those introduced at 37 degrees C. Collectively, these findings demonstrate that a vesicular transport-independent pathway is responsible for the cellular uptake of liposomes. In addition, the uptake route is closely related to the subsequent nuclear delivery process; the operation of an endogenous vesicular sorting system is advantageous for the nuclear delivery of pDNA.  相似文献   

2.
The mechanism of the arginine-rich peptide-mediated cellular uptake is currently a controversial issue. Several factors, including the type of peptide, the nature of the cargo, and the linker between them, appear to affect uptake. One of the less studied factors, which may affect the uptake mechanism, is the effect of peptide density on the surface of the cargo. Here, we examined the mechanism of cellular uptake and intracellular trafficking of liposomes modified with different densities of the octaarginine (R8) peptide. Liposomes modified with a low R8 density were taken up mainly through clathrin-mediated endocytosis, leading to extensive lysosomal degradation, whereas those modified with a high R8 density were taken up mainly through macropinocytosis and were less subject to lysosomal degradation. Furthermore, the high density R8-liposomes were able to stimulate the macropinocytosis-mediated uptake of other particles. When plasmid DNA was condensed and encapsulated in R8-liposomes, the levels of gene expression were three orders of magnitude higher for the high density liposomes. The enhanced gene expression by the high density R8-liposomes was highly impaired by blocking uptake through macropinocytosis. The different extents of gene expression from different densities of the R8 peptide on the liposomes could be explained principally by the existence of an intracellular trafficking route, but not by the uptake amount, of internalized liposomes. These results show that the density of the R8 peptide on liposomes determines the uptake mechanism and that this is directly linked to intracellular trafficking, resulting in different levels of gene expression.  相似文献   

3.
The present study examines the role of surface modification with an octaarginine peptide (R8) in liposomal escape from endocytic vesicles, using octalysine (K8) as a control cationic peptide; the mechanism of endosomal escape of liposomes was also investigated. Gene expression of condensed plasmid DNA encapsulated in R8-modified nanoparticles was more than 1 order of magnitude higher than that of K8-modified nanoparticles, and 2 orders of magnitude higher than gene expression using unmodified nanoparticles. The difference in gene expression could not be attributed to differences in uptake, as R8- and K8-modified liposomes were taken up primarily via macropinocytosis with comparable efficiency. The extent of R8-nanoparticle escape to the cytosol was double that of K8-nanoparticles. Suppression of endosome acidification inhibited R8-nanoparticle endosomal escape, but enhanced that of K8-nanoparticles. Using spectral imaging in live cells, we showed that R8- and K8-liposomes escaped from endocytic vesicles via fusion between the liposomes and the endosomal membrane. R8-liposomes fused efficiently at both acidic and neutral pH, whereas K8-liposomes fused only at neutral pH. Similar behavior was observed during in vitro lipid mixing and calcein-release experiments. Co-incubation of cells with distinctly labeled K8- and R8-modified nanoparticles confirmed a common uptake pathway and different rates of endosomal escape particularly at longer time intervals. Therefore, it was concluded that R8 on the liposome surface stimulates efficient escape from endocytic vesicles via a fusion mechanism that works at both neutral and acidic pH; in contrast, K8 mediates escape mainly at neutral pH.  相似文献   

4.
Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4 °C and 37 °C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox.SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4 °C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process.  相似文献   

5.
Summary The uptake in vitro of horseradish peroxidase (HRP) in mouse skeletal muscle was examined by electron microscopy and chemical determination.In muscles exposed to an HRP solution for 60 min at +37°C, HRP infiltrated the basal lamina of muscle fibres and caused an intense labelling of their sarcolemma. In addition HRP was found within the transverse tubules. Exposure to HRP for 30 min at +37°C followed by HRP together with a polycationic protein (protamine) for 30 min at +37°C caused an intracellular vesicular uptake of HRP. Intracellular HRP was found in numerous vesicles, membrane limited bodies and vacuoles. Protamine also induced focal autophagic vacuolation with progressive muscle fibre degeneration. An intracellular HRP uptake or muscle cell vacuolation could not be detected in the absence of protamine or when the incubation temperature was + 4°C. Chemical determination of HRP uptake was in general agreement with the morphological results. The uptake of HRP in the presence of protamine was stimulated at +31°C and blocked at +4°C.The results suggest that in skeletal muscle in vitro intracellular uptake of macromolecules occurs by endocytosis.  相似文献   

6.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

7.
8.
Alkylresorcinolic lipids isolated from cereal grains and their semi-synthetic myristoyl-sulphonyl derivatives (MSAR) were used to modify small long-circulating sphingomyelin–cholesterol liposomes. Those SM:Chol vesicles modified with 10–30 mol% resorcinolic lipids had stable size and low membrane permeability in vitro at 4 °C and 37 °C. Liposomes containing 30 mol% MSAR showed very fast solute release in the presence of human plasma at 37 °C, which was drastically diminished in heat-inactivated plasma. In vivo studies showed that unmodified SM:Chol liposomes and those modified with alkylresorcinols were eliminated from the circulation more slowly than liposomes with the highest concentration of MSAR in membrane and were located mostly in the liver and spleen.  相似文献   

9.
Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4-12 degrees C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 degrees C incubations. At temperatures between 12 and 30 degrees C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 degrees C. Small increases in the extracellular peptide concentration in 37 degrees C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-beta-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane.  相似文献   

10.
The internalization of a fluorescent analogue of phosphatidylethanolamine following its insertion into the plasma membrane of cultured Chinese hamster fibroblasts was examined. When liposomes composed of 50 mol % 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylethanolamine (C6-NBD-PE) and dioleoylphosphatidylcholine were incubated with monolayer cell cultures at 2 degrees C, a spontaneous transfer of the fluorescent lipid from liposomes to cells occurred. As long as the cells were kept at 2 degrees C, the fluorescent lipid remained at the plasma membrane. However, if, after removing the fluorescent liposomes, the cultures were warmed to 37 degrees C, the C6-NBD-PE was internalized and resided in the nuclear envelope, mitochondria, and Golgi apparatus in addition to the plasma membrane. Delivery of the fluorescent lipid to the Golgi apparatus could be blocked by the addition of 2-deoxyglucose plus sodium azide to the incubation medium. Evidence is presented suggesting that while delivery of the fluorescent lipid to the Golgi apparatus was mainly dependent on endocytosis, delivery to the nuclear envelope and mitochondria occurred by rapid transbilayer movement of the lipid across the plasma membrane followed by translocation of lipid monomers. Rapid transbilayer movement of C6-NBD-PE across the plasma membrane was found to be a temperature-dependent process that was blocked below 7 degrees C.  相似文献   

11.
A promising strategy to improve the immunogenic potential of DNA vaccines is the formulation of plasmid DNA (pDNA) with cationic liposomes. In this respect, particle size may be of crucial importance. This study aimed at the evaluation of high-pressure extrusion as a method for sizing cationic liposomes after entrapment of pDNA. This is a well-known sizing method for liposomes, but so far, it has not been applied for liposomes that are already loaded with pDNA. Liposomes composed of egg PC, DOTAP, and DOPE with entrapped pDNA were prepared by the dehydration-rehydration method and subjected to various extrusion cycles, comparing different membrane pore sizes and extrusion frequencies. At optimized extrusion conditions, liposome diameter (Zave) and polydispersity index (PDI) were reduced from 560 nm and 0.56-150 nm and 0.14 respectively, and 35% of the pDNA was retained. Importantly, gel electrophoresis and transfection experiments with pDNA extracted from these extruded liposomes demonstrated the preservation of the structural and functional integrity of the pDNA. The reduction in size resulted in enhanced transfection of HeLa cells, as detected by functional expression of the fluorescent protein, eGFP. In addition, these liposomes were able to stimulate Toll-like receptor 9, indicating efficient endosomal uptake and release of the included pDNA. In conclusion, high-pressure extrusion is a suitable technique to size cationic liposomes with entrapped pDNA and allows preparation of well-defined nanosized pDNA-liposomes, with preserved pDNA integrity. Their improved transfection efficiency and ability to activate an important pattern-recognition receptor are favorable properties for DNA vaccine delivery vehicles.  相似文献   

12.
Perifosine is a promising anticancer alkylphospholipid (ALP) that induces apoptosis in tumor cells. Here we report evidences against a role of endocytosis in perifosine uptake by human KB carcinoma cells. We have generated a KB cell line resistant to perifosine (KB PERR clone10), which shows cross-resistance to the ALPs miltefosine and edelfosine, a marked impairment in the uptake of 14C-perifosine at both 37 °C and 4 °C, and no signs for active efflux of the drug. KB PERR clone10 cells show a similar rate of raft-dependent endocytosis with respect to the parental cells, and silencing of both clathrin and dynamin in the latter causes only minor changes in the rate of perifosine uptake. Perifosine uptake is a temperature- and ATP-dependent, N-ethylmaleimide- and orthovanadate-sensitive process in parental cells. Accumulation of 14C-perifosine and the fluorescent phospholipid analogue 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl]-phosphatidylethanolamine (NBD-PE) is inhibited by perifosine in a concentration-dependent manner in parental cells. Moreover, NBD-PE accumulation is slower in PERR clone10 cells and correlated with phosphatidylserine exposure in their plasma membrane surface. Together, all these data suggest a role of plasma membrane translocation by a putative phospholipid translocase, rather than endocytosis, as the true mechanism for ALPs uptake in KB carcinoma cells.  相似文献   

13.
OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis   总被引:1,自引:0,他引:1  
For cytosolic delivery of liposomes containing macromolecular drugs, such as proteins or nucleic acids, it would be beneficial to bypass endocytosis to prevent degradation in the lysosomes. Recent reports pointed to the possibility that coupling of TAT-peptides to the outer surface of liposome particles would enable translocation over the cellular plasma membrane. Here, we demonstrate that cellular uptake of TAT-liposomes occurs via endocytosis rather than plasma membrane translocation. The coupling of HIV-1 derived TAT-peptide to liposomes enhances their binding to ovarian carcinoma cells. The binding was inhibited by the presence of heparin or dextran sulfate, indicating that cell surface proteoglycans are involved in the binding interaction. Furthermore, living confocal microscopy studies revealed that binding of the TAT-liposomes to the plasma membrane is followed by intracellular uptake in vesicular structures. Staining the endosomes and lysosomes demonstrated that fluorescent liposomal labels are present within the endosomal and lysosomal compartments. Furthermore, incubation at low temperature or addition of a metabolic or an endocytosis inhibitor blocked cellular uptake. In conclusion, coupling TAT-peptide to the outer surface of liposomes leads to enhanced endocytosis of the liposomes by ovarian carcinoma cells, rather than direct cytosolic delivery by plasma membrane translocation.  相似文献   

14.
Cationic liposomes preferentially target tumor vasculature compared to vessels in normal tissues. The distribution of cationic liposomes along vascular networks is, however, patchy and heterogeneous. To target vessels more uniformly we combined the electrostatic properties of cationic liposomes with the strength of an external magnet. We report part I of development. We evaluated bilayer physical properties of our preparations. We investigated interaction of liposomes with target cells including the role of PEG (polyethylene-glycol), and determined whether magnetic cationic liposomes can respond to an external magnetic field. The inclusion of relatively high concentration of MAG-C (magnetite) at 2.5 mg/ml significantly increased the size of cationic liposomes from 105 ± 26.64 to 267 ± 27.43 nm and reduced the zeta potential from 64.55 ± 16.68 to 39.82 ± 5.26 mv. The phase transition temperature of cationic liposomes (49.97 ± 1.34 °C) reduced with inclusion of MAG-C (46.05 ± 0.21 °C). MAG-C cationic liposomes were internalized by melanoma (B16-F10 and HTB-72) and dermal endothelial (HMVEC-d) cells. PEG partially shielded cationic charge potential of MAG-C cationic liposomes, reduced their ability to interact with target cells in vitro, and uptake by major RES organs. Finally, application of external magnet enhanced tumor retention of magnetic cationic liposomes.  相似文献   

15.
Recently, we reported that 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol (DPPGOG) prolongs the circulation time of thermosensitive liposomes (TSL). Since the only TSL formulation in clinical trials applies DSPE-PEG2000 and lysophosphatidylcholine (P-lyso-PC), the objective of this study was to compare the influence of these lipids with DPPGOG on in vitro stability and heat-induced drug release properties of TSL. The content release rate was significantly increased by incorporating DPPGOG or P-lyso-PC in TSL formulations. DPPC/DSPC/DPPGOG 50:20:30 (m/m) and DPPC/P-lyso-PC/DSPE-PEG2000 90:10:4 (m/m) did not differ significantly in their release rate of carboxyfluorescein with > 70% being released within the first 10s at their phase transition temperature. Furthermore, DPPC/DSPC/DPPGOG showed an improved stability at 37 °C in serum compared to the PEGylated TSL. The in vitro properties of DPPGOG-containing TSL remained unchanged when encapsulating doxorubicin instead of carboxyfluorescein. The TSL retained 89.1 ± 4.0% of doxorubicin over 3 h at 37  °C in the presence of serum. The drug was almost completely released within 120s at 42 °C. In conclusion, DPPGOG improves the in vitro properties in TSL formulations compared to DSPE-PEG2000, since it not only increases the in vivo half-life, it even increases the content release rate without negative effect on TSL stability at 37 °C which has been seen for DSPE-PEG2000/P-lyso-PC containing TSL.  相似文献   

16.
Mikhail A. Galkin 《BBA》2006,1757(3):206-214
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 °C, but not at 37 °C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 °C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 °C, but had little effect at 37 °C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 °C relative to at 37 °C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP.  相似文献   

17.
Erythrocytes l-arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. l-Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes l-arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V max measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes l-arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.  相似文献   

18.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H+-dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of d- and l-[U-14C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-d-glucose/d-[U-14C]glucose and 3-O-methyl-d-glucose/3-O-methyl-d-[U-14C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH4Cl inhibited neither the linear component of d- and l-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-d-[U-14C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol− 1, respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol− 1). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

19.
Cellular internalization of cell-penetrating peptide HIV-1 Tat basic domain (RKKRRQRRR) was studied in Triticale cv AC Alta mesophyll protoplasts. Fluorescently labeled monomer (Tat) and dimer (Tat2) of Tat basic domain efficiently translocated through the plasma membrane of mesophyll protoplast and showed distinct nuclear accumulation within 10 min of incubation. Substitution of first arginine residue with alanine in Tat basic domain (M-Tat) severely reduced cellular uptake of the peptide (3.8 times less than Tat). Tat2 showed greater cellular internalization than Tat (1.6 times higher). However, characteristics of cellular uptake remained same for Tat and Tat2. Cellular internalization of Tat and Tat2 was concentration dependent and non-saturable whereas no significant change in cellular uptake was observed even at higher concentrations of M-Tat. Low temperature (4 °C) remarkably increased cellular internalization of Tat as well as Tat2 but M-Tat showed no enhanced uptake. Viability test showed that peptide treatment had no cytotoxic effect on protoplasts further indicating involvement of a common mechanism of peptide uptake at all the temperatures. Endocytic inhibitors nocodazole (10 μM), chloroquine (100 μM) and sodium azide (5 mM) did not show any significant inhibitory effect on cellular internalization of either Tat or Tat2. These results along with stimulated cellular uptake at low temperature indicate that Tat peptide is internalized in the plant protoplasts in a non-endocytic and energy-independent manner. Competition experiments showed that non-labeled peptide did not inhibit or alter nuclear accumulation of fluorescent Tat or Tat2 suggesting active transport to the nucleus was not involved. Studies in mesophyll protoplasts show that internalization pattern of Tat peptide is apparently similar to that observed in mammalian cell lines.  相似文献   

20.
In spite of the important roles of dendritic cells in DNA-based therapies, the cellular uptake mechanism of plasmid DNA (pDNA) in dendritic cells is poorly understood. The present study was undertaken to investigate the binding and uptake of pDNA in vitro using a murine dendritic cell line, DC2.4 cells. A significant and time-dependent cellular association of [32P]pDNA with DC2.4 cells was observed at 37 degrees C and this fell markedly at 4 degrees C. The binding and uptake of [32P]pDNA were significantly inhibited by cold pDNA, polyinosinic acid (poly[I]), dextran sulfate, or heparin, but not by polycytidylic acid (poly[C]), dextran, or EDTA, suggesting that a specific mechanism mediated by a receptor like the macrophage scavenger receptor may be involved. The TCA precipitation experiments showed that DC2.4 cells rapidly endocytosed and degraded a significant amount of [32P]pDNA at 37 degrees C and released the degradation products into the medium. The pDNA degradation was also significantly inhibited by poly[I], but not poly[C]. The rate of pDNA degradation by DC2.4 cells was significantly higher than that by macrophages. A confocal microscopic study using fluorescein-labeled pDNA confirmed the rapid internalization and degradation of pDNA by the dendritic cells. Taken together, these results indicate that pDNA is efficiently taken up and rapidly digested by the dendritic cells via a specific mechanism. These findings may suggest the important role of the dendritic cells in the innate immune system for host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号