首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-μm pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.  相似文献   

2.
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the K and D proton pathways, a third proton pathway (Q) has been identified only in ba3-cytochrome c oxidase from Thermus thermophilus, and consists of residues that are highly conserved in all structurally known heme-copper oxidases. The Q pathway starts from the cytoplasmic side of the membrane and leads through the axial heme a3 ligand His-384 to the propionate of the heme a3 pyrrol ring A, and then via Asn-366 and Asp-372 to the water pool. We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS2-FTIR) spectroscopies to investigate the protonation/deprotonation events in the Q-proton pathway at ambient temperature. The photolysis of CO from heme a3 and its transient binding to CuB is dynamically linked to structural changes that can be tentatively attributed to ring A propionate of heme a3 (1695/1708 cm(-1)) and to deprotonation of Asp-372 (1726 cm(-1)). The implications of these results with respect to the role of the ring A propionate of heme a3-Asp372-H2O site as a proton carrier to the exit/output proton channel (H2O pool) that is conserved among all structurally known heme-copper oxidases, and is part of the Q-proton pathway in ba3-cytochrome c oxidase, are discussed.  相似文献   

3.
Pathological changes associated with the development of brain tumor were investigated by Fourier transform infrared microspectroscopy (FT-IRM) with high spatial resolution. Using multivariate statistical analysis and imaging, all normal brain structures were discriminated from tumor and surrounding tumor tissues. These structural changes were mainly related to qualitative and quantitative changes in lipids (tumors contain little fat) and were correlated to the degree of myelination, an important factor in several neurodegenerative disorders. Lipid concentration and composition may thus be used as spectroscopic markers to discriminate between healthy and tumor tissues. Additionally, we have identified one peculiar structure all around the tumor. This structure could be attributed to infiltrative events, such as peritumoral oedema observed during tumor development. Our results highlight the ability of FT-IRM to identify the molecular origin that gave rise to the specific changes between healthy and diseased states. Comparison between pseudo-FT-IRM maps and histological examinations (Luxol fast blue, Luxol fast blue-cresyl violet staining) showed the complementarities of both techniques for early detection of tissue abnormalities.  相似文献   

4.
The Wiener filter is a standard means of optimizing the signal in sums of aligned, noisy images obtained by electron cryo-microscopy (cryo-EM). However, estimation of the resolution-dependent (“spectral”) signal-to-noise ratio (SSNR) from the input data has remained problematic, and error reduction due to specific application of the SSNR term within a Wiener filter has not been reported. Here we describe an adjustment to the Wiener filter for optimal summation of images of isolated particles surrounded by large regions of featureless background, as is typically the case in single-particle cryo-EM applications. We show that the density within the particle area can be optimized, in the least-squares sense, by scaling the SSNR term found in the conventional Wiener filter by a factor that reflects the fraction of the image field occupied by the particle. We also give related expressions that allow the SSNR to be computed for application in this new filter, by incorporating a masking step into a Fourier Ring Correlation (FRC), a standard resolution measure. Furthermore, we show that this masked FRC estimation scheme substantially improves on the accuracy of conventional SSNR estimation methods. We demonstrate the validity of our new approach in numeric tests with simulated data corresponding to realistic cryo-EM imaging conditions. This variation of the Wiener filter and accompanying derivation should prove useful for a variety of single-particle cryo-EM applications, including 3D reconstruction.  相似文献   

5.
Electrochemical scanning tunneling microscopy (EC-STM) was employed to study the aggregation of trichogin OMe (TCG), an antimicrobial peptide, incorporated into a lipid monolayer. High-resolution EC-STM images show that trichogin molecules aggregate to form channels in the lipid monolayer. Two types of aggregates were observed in the images. The first consisted of a bundle of six TCG molecules surrounding a central pore. The structure and dimensions of this channel are similar to aggregates that in bilayers are described by the barrel-stave model. The EC-STM images also reveal that channels aggregate further to form a hexagonal lattice of a two dimensional (2D) nanocrystal. The model of 2D lattice was built from trimers of TCG molecules that alternatingly are oriented with either hydrophilic or hydrophobic faces to each other. In this way each TCG molecule is oriented partially with its hydrophilic face towards the hexameric pore allowing the formation of the column of water inside this pore.  相似文献   

6.
The generation of ab initio three-dimensional (3D) models is a bottleneck in the studies of large macromolecular assemblies by single-particle cryo-electron microscopy. We describe here a novel method, in which established methods for two-dimensional image processing are combined with newly developed programs for joint rotational 3D alignment of a large number of class averages (RAD) and calculation of 3D volumes from aligned projections (VolRec). We demonstrate the power of the method by reconstructing an ∼ 660-kDa ATP-fueled AAA+ motor to 7.5 Å resolution, with secondary structure elements identified throughout the structure. We propose the method as a generally applicable automated strategy to obtain 3D reconstructions from unstained single particles imaged in vitreous ice.  相似文献   

7.
Photoreversible changes in the conformation and enzymatic activity of bovine carbonic anhydrase have been investigated as a function of photoresponsive surfactant concentration and light conditions. The light-responsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to photoreversibly control enzyme–surfactant interactions. Small-angle neutron scattering and dynamic light scattering measurements, along with fluorescence spectroscopy, indicate that carbonic anhydrase unfolds upon addition of the surfactant under visible light, while only a small degree of unfolding is observed under UV light. Therefore, the enzyme is completely inactivated in the presence of the trans surfactant, while 40% of the native activity is preserved under UV light, providing a photoreversible “on/off switch” of enzyme activity. Small-angle neutron scattering data provide details of the in vitro conformational changes of the enzyme in response to the photosurfactant and light, with the enzyme found to aggregate as a result of photosurfactant-induced unfolding. Fourier transform infrared (FT-IR) spectroscopy further provides information on the secondary structure changes of the protein in the presence of photosurfactant.  相似文献   

8.
The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered (Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase. The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics. In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion, which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So–Ld phase are static and large while they are small and dynamic in the Lo–Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells. The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity.  相似文献   

9.
Human islet amyloid polypeptide (hIAPP), which is considered the primary culprit for β-cell loss in type 2 diabetes mellitus patients, is synthesized in β-cells of the pancreas from its precursor pro-islet amyloid polypeptide (proIAPP), which may be important in early intracellular amyloid formation as well. We compare the amyloidogenic propensities and conformational properties of proIAPP and hIAPP in the presence of negatively charged lipid membranes, which have been discussed as loci of initiation of the fibrillation reaction. Circular dichroism studies verify the initial secondary structures of proIAPP and hIAPP to be predominantly unordered with small amounts of ordered secondary structure elements, and exhibit minor differences between these two peptides only. Using attenuated total reflection-Fourier transform infrared spectroscopy and thioflavin T fluorescence spectroscopy, as well as atomic force microscopy, we show that in the presence of negatively charged membranes, proIAPP exhibits a much higher amyloidogenic propensity than in bulk solvent. Compared to hIAPP, it is still much less amyloidogenic, however. Although differences in the secondary structures of the aggregated species of hIAPP and proIAPP at the lipid interface are small, they are reflected in morphological changes. Unlike hIAPP, proIAPP forms essentially oligomeric-like structures at the lipid interface. Besides the interaction with anionic membranes [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) + x1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]], interaction with zwitterionic homogeneous (DOPC) and heterogeneous (1,2-dipalmitoyl-sn-glycero-3-phosphocholine:DOPC:cholesterol 1:2:1 model raft mixture) membranes has also been studied. Both peptides do not aggregate significantly at DOPC bilayers. In the presence of the model raft membrane, hIAPP aggregates markedly as well. Conversely, proIAPP clusters into less ordered structures and to a minor extent at raft membranes only. The addition of proIAPP to hIAPP retards the hIAPP fibrillation process also in the presence of negatively charged lipid bilayers. In excess proIAPP, increased aggregation levels are finally observed, however, which could be attributed to seed-induced cofibrillation of proIAPP.  相似文献   

10.

Background

A common strategy of microbial pathogens is to invade host cells during infection. The invading microbes explore different intracellular compartments to find their preferred niche.

Scope of Review

Imaging has been instrumental to unravel paradigms of pathogen entry, to identify their exact intracellular location, and to understand the underlying mechanisms for the formation of pathogen-containing niches. Here, we provide an overview of imaging techniques that have been applied to monitor the intracellular lifestyle of pathogens, focusing mainly on bacteria that either remain in vacuolar-bound compartments or rupture the endocytic vacuole to escape into the host's cellular cytoplasm.

Major Conclusions

We will depict common molecular and cellular paradigms that are preferentially exploited by pathogens. A combination of electron microscopy, fluorescence microscopy, and time-lapse microscopy has been the driving force to reveal underlying cell biological processes. Furthermore, the development of highly sensitive and specific fluorescent sensor molecules has allowed for the identification of functional aspects of niche formation by intracellular pathogens.

General Significance

Currently, we are beginning to understand the sophistication of the invasion strategies used by bacterial pathogens during the infection process- innovative imaging has been a key ingredient for this.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号