首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and inexpensive method for functionalization of preformed liposomes is presented. Soy sterol-PEG1300 ethers are activated by tresylation at the end of the PEG chain. Coupling of bovine serum albumin as an amino group containing model ligand to the activated lipids can be performed at pH 8.4 with high efficiency. At room temperature, the mixture of sterol-PEG and sterol-PEG-protein inserts rapidly into the outer liposome monolayer with high efficiency (>100 microg protein/mumol total lipid). This method of post-functionalization is shown to be effective with fluid or rigid and plain or pre-PEGylated liposomes (EPC/Chol, 7:3; HSPC/Chol 2:1, and EPC/Chol/MPEG2000-DSPE 2:1:0.16 molar ratios). The release of entrapped calcein upon the insertion of 7.5 mol% of the functionalized sterols is lower than 4%. Incubation of post-functionalized liposomes with serum for 20 h at 37 degrees C shows stable protein attachment at the liposome surface.  相似文献   

2.
The role of the surface polymer brush of nonionic surfactant vesicles (NSV) in inhibiting interactions with small membrane-perturbing molecules was investigated using the bee venom peptide melittin as a probe. The interaction between melittin and NSV was compared with that of distearoylphosphatidylcholine (DSPC) vesicles and sterically stabilised liposomes (SSL) containing 5 mol% pegylated distearoylphosphatidylethanolamine (DSPE.E44). The degree of melittin interaction with the various vesicles was determined by measuring peptide binding and folding, using intrinsic tryptophan fluorescence and circular dichroism respectively, in addition to monitoring the release of encapsulated carboxyfluorescein dye. NSV composed of 1,2-di-O-octadecyl-rac-glyceryl-3-(ω-dodecaethylene glycol) (2C18E12) showed a strong affinity for melittin, whilst exhibiting ~ 50% less bound peptide than SSL. 2C18E12:Chol vesicles showed reduced melittin interaction, in a manner consistent with Chol incorporation into DSPC vesicles. These results are discussed with respect to the effect of Chol on the in-plane order of 2C18E12 bilayers and consequent attenuation of hydrophobic interactions with the peptide. NSV formed from equimolar mixtures of polyoxyethylene-n-stearoyl ethers C18E2 and C18E20 showed a greater interaction with melittin than 2C18E12. However, replacing C18E20 with C18E10 was sufficient to achieve an attenuation of melittin interaction similar to that observed in 2C18E12:Chol vesicles. This indicates that the presence of surface polymer brush alone may confer resistance to melittin, provided hydrophobic interactions between the peptide and the vesicles can be minimised, through improved in-plane bilayer order.  相似文献   

3.
The drug retention and circulation lifetime properties of liposomal nanoparticles (LN) containing dihydrosphingomyelin (DHSM) have been investigated. It is shown that replacement of egg sphingomyelin (ESM) by DHSM in sphingomyelin/cholesterol (Chol) (55/45; mol/mol) LN results in substantially improved drug retention properties both in vitro and in vivo. In the case of liposomal formulations of vincristine, for example, the half-times for drug release (T1/2) were approximately 3-fold longer for DHSM/Chol LN as compared to ESM/Chol LN, both in vitro and in vivo. Further increases in T1/2 could be achieved by increasing the drug-to-lipid ratio of the liposomal vincristine formulations. In addition, DHSM/Chol LN also exhibit improved circulation lifetimes in vivo as compared to ESM/Chol LN. For example, the half-time for LN clearance (Tc1/2) at a low lipid dose (15 μmol lipid/kg, corresponding to 8 mg lipid/kg body weight) in mice was 3.8 h for ESM/Chol LN compared to 6 h for DHSM/Chol LN. In addition, it is also shown that DHSM/Chol LN exhibit much longer half-times for vincristine release as compared to LN with the “Stealth” lipid composition. It is anticipated that DHSM/Chol LN will prove useful as drug delivery vehicles due to their excellent drug retention and circulation lifetime properties.  相似文献   

4.
We have previously shown that the PEGylated LPD (liposome-polycation-DNA) nanoparticles were highly efficient in delivering siRNA to the tumor with low liver uptake. Its mechanism of evading the reticuloendothelial system (RES) is reported here. In LPD, nucleic acids were condensed with protamine into a compact core, which was then coated by two cationic lipid bilayers with the inner bilayer stabilized by charge-charge interaction (also called the supported bilayer). Finally, a detergent-like molecule, polyethylene glycol (PEG)-phospholipid is post-inserted into the lipid bilayer to modify the surface of LPD. The dynamic light scattering (DLS) data showed that LPD had improved stability compared to cationic liposomes after incubation with a high concentration of DSPE-PEG2000, which is known to disrupt the bilayer. LPD prepared with a multivalent cationic lipid, DSGLA, had enhanced stability compared to those containing DOTAP, a monovalent cationic lipid, suggesting that stronger charge-charge interaction in the supported bilayer contributed to a higher stability. Distinct nanoparticle structure was found in the PEGylated LPD by transmission electron microscopy, while the cationic liposomes were transformed into tubular micelles. Size exclusion chromatography data showed that approximately 60% of the total cationic lipids, which were located in the outer bilayer of LPD, were stripped off during the PEGylation; and about 20% of the input DSPE-PEG2000 was incorporated into the inner bilayer with about 10.6 mol% of DSPE-PEG2000 presented on the particle surface. This led to complete charge shielding, low liver sinusoidal uptake, and 32.5% injected dose delivered to the NCI-H460 tumor in a xenograft model.  相似文献   

5.
The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG2000) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG2000. At this proportion of DSPE-PEG2000, the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG2000 in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.  相似文献   

6.
Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA—each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Ψ0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Ψ0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Ψ0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Ψ0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.  相似文献   

7.
In this study, vibrational circular dichroism (VCD) spectroscopy was employed for the first time to study the bilirubin (BR) interaction with model membranes and models for membrane proteins. An enantioselective interaction of BR with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SPM) liposomes was observed by VCD and electronic circular dichroism (ECD) complemented by absorption and fluorescence spectroscopy. The M-form of BR was preferentially recognized in the BR/DMPC system at concentration above 1 × 10− 4 M, for lower concentrations the P-form of BR was recognized by the DMPC liposomes. The VCD spectra also showed that the SPM liposomes, which represent the main component of nerve cell membrane, were significantly more disturbed by the presence of BR than the DMPC liposomes—a stable association with a strong VCD signal was observed providing the explanations for the supposed BR neurotoxicity. The effect of time and pH on the BR/DMPC or SPM liposome systems was shown to be essential while the effect of temperature in the range of 15–70 °C was negligible demonstrating the surprisingly high temperature stability of BR when interacting with the studied membranes. The influence of a membrane protein was tested on a model consisting of poly-l-arginine (PLAG) bound in the α-helical form to the surface of 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) liposomes and sodium dodecyl sulfate micelles. VCD and also ECD spectra showed that a variety of BR diastereoisomers interacted with PLAG in such systems. In a system of PLAG with micelles composed of sodium dodecyl sulfate, the M-form of bound BR was observed.  相似文献   

8.
Design of peptide-targeted liposomes containing nucleic acids   总被引:1,自引:0,他引:1  
Anticancer systemic gene silencing therapy has been so far limited by the inexistence of adequate carrier systems that ultimately provide an efficient intracellular delivery into target tumor cells. In this respect, one promising strategy involves the covalent attachment of internalizing-targeting ligands at the extremity of PEG chains grafted onto liposomes. Therefore, the present work aims at designing targeted liposomes containing nucleic acids, with small size, high encapsulation efficiency and able to be actively internalized by SCLC cells, using a hexapeptide (antagonist G) as a targeting ligand. For this purpose, the effect of the liposomal preparation method, loading material (ODN versus siRNA) and peptide-coupling procedure (direct coupling versus post-insertion) on each of the above-mentioned parameters was assessed. Post-insertion of DSPE-PEG-antagonist G conjugates into preformed liposomes herein named as stabilized lipid particles, resulted in targeted vesicles with a mean size of about 130 nm, encapsulation efficiency close to 100%, and a loading capacity of approximately 5 nmol siRNA/μmol of total lipid. In addition, the developed targeted vesicles showed increased internalization in SCLC cells, as well as in other tumor cells and HMEC-1 microvascular endothelial cells. The improved cellular association, however, did not correlate with enhanced downregulation of the target protein (Bcl-2) in SCLC cells. These results indicate that additional improvements need to be performed in the future, namely by ameliorating the access of the nucleic acids to the cytoplasm of the tumor cells following receptor-mediated endocytosis.  相似文献   

9.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

10.
Apolipophorin III (apoLp-III) from Locusta migratoria was employed as a model apolipoprotein to gain insight into binding interactions with lipid vesicles. Differential scanning calorimetry (DSC) was used to measure the binding interaction of apoLp-III with liposomes composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SM). Association of apoLp-III with multilamellar liposomes occurred over a temperature range around the liquid crystalline phase transition (Lα). Qualitative and quantitative data were obtained from changes in the lipid phase transition upon addition of apoLp-III. Eleven ratios of DMPC and SM were tested from pure DMPC to pure SM. Broadness of the phase transition (T1/2), melting temperature of the phase transition (Tm) and enthalpy were used to determine the relative binding affinity to the liposomes. Multilamellar vesicles composed of 40% DMPC and 60% SM showed the greatest interaction with apoLp-III, indicated by large T1/2 values. Pure DMPC showed the weakest interaction and liposomes with lower percentage of DMPC retained domains of pure DMPC, even upon apoLp-III binding indicating demixing of liposome lipids. Addition of apoLp-III to rehydrated liposomes was compared to codissolved trials, in which lipids were rehydrated in the presence of protein, forcing the protein to interact with the lipid system. Similar trends between the codissolved and non-codissolved trials were observed, indicating a similar binding affinity except for pure DMPC. These results suggested that surface defects due to non-ideal packing that occur at the phase transition temperature of the lipid mixtures are responsible for apolipoprotein-lipid interaction in DMPC/SM liposomes.  相似文献   

11.
We have developed a novel α-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 °C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane.  相似文献   

12.
Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to study the molecular details of its anchoring mechanism in a homologue series of lipids with the same polar head group but different hydrophobic chain length. The major coat proteins were reconstituted into 14:1PC, 16:1PC, 18:1PC, 20:1PC, and 22:1PC bilayers, and the fluorescence spectra were measured of the intrinsic tryptophan at position 26 and BADAN attached to an introduced cysteine at position 46, located at the opposite ends of the transmembrane helix. The fluorescence maximum of tryptophan shifted for 700 cm-1 on going from 14:1PC to 22:1PC, the corresponding shift of the fluorescence maximum of BADAN at position 46 was approximately 10 times less (∼ 70 cm-1). Quenching of fluorescence with the spin label CAT 1 indicates that the tryptophan is becoming progressively inaccessible for the quencher with increasing bilayer thickness, whereas quenching of BADAN attached to the T46C mutant remained approximately unchanged. This supports the idea that the BADAN probe at position 46 remains at the same depth in the bilayer irrespective of its thickness and clearly indicates an asymmetrical nature of the protein dipping in the lipid bilayer. The anchoring strength at the C-terminal domain of the protein (provided by two phenylalanine residues together with four lysine residues) was estimated to be roughly 5 times larger than the anchoring strength of the N-terminal domain.  相似文献   

13.
Recent studies indicate that the chelator lipid nitrilotriacetic acid ditetradecylamine (NTA-DTDA) can be used to engraft T cell costimulatory molecules onto tumor cell membranes, potentially circumventing the need for genetic manipulation of the cells for development of cell- or membrane-based tumor vaccines. Here, we show that a related lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA3-DTDA, which has three NTA moieties in its headgroup instead of one) is several-fold more effective than NTA-DTDA at promoting stable His-tagged protein engraftment. IAsys biosensor studies show that binding of His-tagged B7.1 (B7.1-6H) to NTA3-DTDA-containing membranes, exhibit a faster on-rate and a slower off-rate, compared to membranes containing NTA-DTDA. Also, NTA3-DTDA-containing liposomes and plasma membrane vesicles (PMV) engrafted with B7.1-6H and CD40-6H exhibit greater binding to T cells, in vitro and in vivo. Engrafted NTA3-DTDA-containing PMV encapsulated cytokines such as IL-2, IL-12, GM-CSF and IFN-γ, allowing targeted delivery of both antigen and cytokine to T cells, and stimulation of antigen-specific T cell proliferation and cytotoxicity. Importantly, use of B7.1-CD40-engrafted PMV containing IL-2 and IL-12 as a vaccine in DBA/2J mice induced protection against challenge with syngeneic tumor cells (P815 mammary mastocytoma), and regression of established tumors. The results show that stable protein engraftment onto liposomal membranes using NTA3-DTDA can be used to simultaneously target associated antigen, costimulatory molecules and cytokines to T cells in vivo, inducing strong anti-tumor responses and immunotherapeutic effect.  相似文献   

14.
Permeabilization of the phospholipid membrane, induced by the antibiotic peptides zervamicin IIB (ZER), ampullosporin A (AMP) and antiamoebin I (ANT) was investigated in a vesicular model system. Membrane-perturbing properties of these 15/16 residue peptides were examined by measuring the K+ transport across phosphatidyl choline (PC) membrane and by dissipation of the transmembrane potential. The membrane activities are found to decrease in the order ZER > AMP >> ANT, which correlates with the sequence of their binding affinities. To follow the insertion of the N-terminal Trp residue of ZER and AMP, the environmental sensitivity of its fluorescence was explored as well as the fluorescence quenching by water-soluble (iodide) and membrane-bound (5- and 16-doxyl stearic acids) quenchers. In contrast to AMP, the binding affinity of ZER as well as the depth of its Trp penetration is strongly influenced by the thickness of the membrane (diC16:1PC, diC18:1PC, C16:0/C18:1PC, diC20:1PC). In thin membranes, ZER shows a higher tendency to transmembrane alignment. In thick membranes, the in-plane surface association of these peptaibols results in a deeper insertion of the Trp residue of AMP which is in agreement with model calculations on the localization of both peptide molecules at the hydrophilic-hydrophobic interface. The observed differences between the membrane affinities/activities of the studied peptaibols are discussed in relation to their hydrophobic and amphipathic properties.  相似文献   

15.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

16.
The viral channel KcvNTS belongs to the smallest K+ channels known so far. A monomer of a functional homotetramer contains only 82 amino acids. As a consequence of the small size the protein is almost fully submerged into the membrane. This suggests that the channel is presumably sensitive to its lipid environment. Here we perform a comparative analysis for the function of the channel protein embedded in three different membrane environments. 1. Single-channel currents of KcvNTS were recorded with the patch clamp method on the plasma membrane of HEK293 cells. 2. They were also measured after reconstitution of recombinant channel protein into classical planar lipid bilayers and 3. into horizontal bilayers derived from giant unilamellar vesicles (GUVs). The recombinant channel protein was either expressed and purified from Pichia pastoris or from a cell-free expression system; for the latter a new approach with nanolipoprotein particles was used. The data show that single-channel activity can be recorded under all experimental conditions. The main functional features of the channel like a large single-channel conductance (80 pS), high open-probability (> 50%) and the approximate duration of open and closed dwell times are maintained in all experimental systems. An apparent difference between the approaches was only observed with respect to the unitary conductance, which was ca. 35% lower in HEK293 cells than in the other systems. The reason for this might be explained by the fact that the channel is tagged by GFP when expressed in HEK293 cells. Collectively the data demonstrate that the small viral channel exhibits a robust function in different experimental systems. This justifies an extrapolation of functional data from these systems to the potential performance of the channel in the virus/host interaction. This article is part of a Special Issue entitled: Viral Membrane Proteins—Channels for Cellular Networking.  相似文献   

17.
We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Ku?erka et al., 2012 J. Phys. Chem. B 116: 232–239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135–2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayer's chemical composition is known. Specifically, in the case of neutron scattering, the lipid's exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8 Å2, depending on the lipid's acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.  相似文献   

18.
In the mixture of lipids and proteins which comprise pulmonary surfactant, the dominant protein by mass is surfactant protein A (SP-A), a hydrophilic glycoprotein. SP-A forms octadecamers that interact with phospholipid bilayer surfaces in the presence of calcium. Deuterium NMR was used to characterize the perturbation by SP-A, in the presence of 5 mM Ca2+, of dipalmitoyl phosphatidylcholine (DPPC) properties in DPPC/egg-PG (7:3) bilayers. Effects of SP-A were uniformly distributed over the observed DPPC population. SP-A reduced DPPC chain orientational order significantly in the gel phase but only slightly in the liquid-crystalline phase. Quadrupole echo decay times for DPPC chain deuterons were sensitive to SP-A in the liquid-crystalline mixture but not in the gel phase. SP-A reduced quadrupole splittings of DPPC choline β-deuterons but had little effect on choline α-deuteron splittings. The observed effects of SP-A on DPPC/egg-PG bilayer properties differ from those of the hydrophobic surfactant proteins SP-B and SP-C. This is consistent with the expectation that SP-A interacts primarily at bilayer surfaces.  相似文献   

19.
Cannabinoids are compounds that can modulate neuronal functions and immune responses via their activity at the CB1 receptor. We used 2H NMR order parameters and relaxation rate determination to delineate the behavior of magnetically aligned phospholipid bilayers in the presence of several structurally distinct cannabinoid ligands. THC (Δ9-Tetrahydrocannabinol) and WIN-55,212-2 were found to lower the phase transition temperature of the DMPC and to destabilize their acyl chains leading to a lower average SCD (≈ 0.13), while methanandamide and CP-55,940 exhibited unusual properties within the lipid bilayer resulting in a greater average SCD (≈ 0.14) at the top of the phospholipid upper chain. The CB1 antagonist AM281 had average SCD values that were higher than the pure DMPC lipids, indicating a stabilization of the lipid bilayer. R1Z versus |SCD|2 plots indicated that the membrane fluidity is increased in the presence of THC and WIN-55,212-2. The interaction of CP-55,940 with a variety of zwitterionic and charged membranes was also assessed. The unusual effect of CP-55,940 was present only in bicelles composed of DMPC. These studies strongly suggest that cannabinoid action on the membrane depends upon membrane composition as well as the structure of the cannabinoid ligands.  相似文献   

20.
Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B1-25, a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B1-25 interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B1-25 on lipid organization and polymorphisms was investigated via DSC, dynamic light scattering, transmission electron microscopy, and solid-state NMR spectroscopy. At 1-3 mol% peptide and physiologic temperature, SP-B1-25 partitions at the interface of negatively charged PC/PG lipid bilayers. In lipid mixtures containing 1-5 mol% peptide, the structure of SP-B1-25 remains constant, but 2H and 31P NMR spectra show the presence of an isotropic lipid phase in exchange with the lamellar phase below the Tm of the lipids. This behavior is observed for both DPPC/POPG and POPC/POPG lipid mixtures as well as for both the PC and PG components of the mixtures. For 1-3 mol% SP-B1-25, a return to a single lamellar phase above the lipid mixture Tm is observed, but for 5 mol% SP-B1-25 a significant isotropic component is observed at physiologic temperatures for DPPC and exchange broadening is observed in 2H and 31P NMR spectra of the other lipid components in the two mixtures. DLS and TEM rule out the formation of micellar structures and suggest that SP-B1-25 promotes the formation of a fluid isotropic phase. The ability of SP-B1-25 to fuse lipid lamellae via this mechanism, particularly those enriched in DPPC, suggests a specific role for the highly conserved N-terminus of SP-B in the packing of lipid lamellae into surfactant lamellar bodies or in stabilizing multilayer structures at the air-liquid interface. Importantly, this behavior has not been seen for the other SP-B fragments of SP-B8-25 and SP-B59-80, indicating a critical role for the proline rich first seven amino acids in this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号