首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases   总被引:8,自引:0,他引:8  
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the "sphingolipid rheostat", producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.  相似文献   

2.
Sphingosine kinase,sphingosine-1-phosphate,and apoptosis   总被引:31,自引:0,他引:31  
The sphingolipid metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) play an important role in the regulation of cell proliferation, survival, and cell death. Cer and Sph usually inhibit proliferation and promote apoptosis, while the further metabolite S1P stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determines cell fate. The relevance of this "sphingolipid rheostat" and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that Sph kinase (SphK), the enzyme that phosphorylates Sph to form S1P, is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic Cer and Sph. Given the role of the sphingolipid rheostat in regulating growth and apoptosis, it is not surprising that sphingolipid metabolism is often found to be disregulated in cancer, a disease characterized by enhanced cell growth, diminished cell death, or both. Anticancer therapeutics targeting SphK are potentially clinically relevant. Indeed, inhibition of SphK has been shown to suppress gastric tumor growth [Cancer Res. 51 (1991) 1613] and conversely, overexpression of SphK increases tumorigenicity [Curr. Biol. 10 (2000) 1527]. Moreover, S1P has also been shown to regulate angiogenesis, or new blood vessel formation [Cell 99 (1999) 301], which is critical for tumor progression. Furthermore, there is intriguing new evidence that S1P can act in an autocrine and/or paracrine fashion [Science 291 (2001) 1800] to regulate blood vessel formation [J. Clin. Invest. 106 (2000) 951]. Thus, SphK may not only protect tumors from apoptosis, it may also increase their vascularization, further enhancing growth. The cytoprotective effects of SphK/S1P may also be important for clinical benefit, as S1P has been shown to protect oocytes from radiation-induced cell death in vivo [Nat. Med. 6 (2000) 1109]. Here we review the growing literature on the regulation of SphK and the role of SphK and its product, S1P, in apoptosis.  相似文献   

3.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   

4.
Sphingolipids are ubiquitous components of eukaryotic cells and sphingolipid metabolites, such as the long chain base phosphate (LCB-P), sphingosine 1 phosphate (S1P) and ceramide (Cer) are important regulators of apoptosis in animal cells. This study evaluated the role of LCB-Ps in regulating apoptotic-like programmed cell death (AL-PCD) in plant cells using commercially available S1P as a tool. Arabidopsis cell cultures were exposed to a diverse array of cell death-inducing treatments (including Cer) in the presence of S1P. Rates of AL-PCD and cell survival were recorded using vital stains and morphological markers of AL-PCD. Internal LCB-P levels were altered in suspension cultured cells using inhibitors of sphingosine kinase and changes in rates of death in response to heat stress were evaluated. S1P reduced AL-PCD and promoted cell survival in cells subjected to a range of stresses. Treatments with inhibitors of sphingosine kinase lowered the temperature which induced maximal AL-PCD in cell cultures. The data supports the existence of a sphingolipid rheostat involved in controlling cell fate in Arabidopsis cells and that sphingolipid regulation of cell death may be a shared feature of both animal apoptosis and plant AL-PCD.  相似文献   

5.
Sphingolipids, including ceramide (Cer), sphingosine (Sph), and sphingosine 1-phosphate (Sph-1-P) have recently emerged as signal-transducing molecules. Functionally, a distinguishing characteristic of these lipids is their apparent participation in pro- or anti-proliferative cell regulation pathways. In this study, we examined the involvement of sphingolipids in the fate of FRTL-5 thyroid follicular cells. We first examined the effects of sphingolipids on FRTL-5 cell viability. Sph and Cer induced apoptosis, as revealed by fluorescence microscopy of TUNEL-positive fragmented nuclei and 180-300 bp DNA fragmentation on agarose gel electrophoresis while Sph-1-P was confirmed to prevent FRTL-5 cell apoptosis induced by deprivation of serum and TSH, possibly via cell surface receptors. We then analysed the metabolism of radiolabelled Sph and C(6)-Cer (a synthetic cell-permeable Cer) in FRTL-5 cells by thin layer chromatography, followed by autoradiography. Sph was mainly metabolized to Cer, and then to sphingomyelin, while Sph conversion into Sph-1-P was hardly detected. These changes were not affected by stimulation of the cells with TSH. Our results indicate the involvement of sphingolipid mediators in the fate of FRTL-5 thyroid cells.  相似文献   

6.
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.  相似文献   

7.
Novel isosteric analogs of the ceramidase inhibitors (1S,2R)-N-myristoylamino-phenylpropanol-1 (d-e-MAPP) and (1R,2R)-N-myristoylamino-4'-nitro-phenylpropandiol-1,3 (B13) with modified targeting and physicochemical properties were developed and evaluated for their effects on endogenous bioactive sphingolipids: ceramide, sphingosine, and sphingosine 1-phosphate (Cer, Sph, and S1P) in MCF7 cells as determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Time- and dose-response studies on the effects of these compounds on Cer species and Sph levels, combined with structure-activity relationship (SAR) data, revealed 4 distinct classes of analogs which were predominantly defined by modifications of the N-acyl-hydrophobic interfaces: N-acyl-analogs (class A), urea-analogs (class B), N-alkyl-analogs (class C), and omega-cationic-N-acyl analogs (class D). Signature patterns recognized for two of the classes correspond to the cellular compartment of action of the new analogs, with class D acting as mitochondriotropic agents and class C compounds acting as lysosomotropic agents. The neutral agents, classes A and B, do not have this compartmental preference. Moreover, we observed a close correlation between the selective increase of C(16)-, C(14)-, and C(18)-Cers and inhibitory effects on MCF7 cell growth. The results are discussed in the context of compartmentally targeted regulators of Sph, Cer species, and S1P in cancer cell death, emphasizing the role of C(16)-Cer. These novel analogs should be useful in cell-based studies as specific regulators of Cer-Sph-S1P inter-metabolism, in vitro enzymatic studies, and for therapeutic development.  相似文献   

8.
鞘磷脂特别是鞘脂是髓鞘的主要成分,高度集中在中枢神经系统。在生理和病理生理条件下,具有生物活性的鞘磷脂及其代谢产物以及信号传导过程的重要性正在逐步被人们所认识。鞘脂代谢产物鞘氨醇及其前体物质神经酰胺与细胞生长停滞和凋亡有关,而1-磷酸鞘氨醇与增强细胞增殖、分化和细胞生存以及调节细胞的生理和病理过程有关,具有细胞外第一信使和细胞内第二信使的双重功能。这三者之间的相互转换、鞘脂代谢物的相对水平以及细胞的命运,受到鞘氨醇激酶的活性的强烈影响。鞘氨醇激酶可催化磷酸鞘氨醇产生1-磷酸鞘氨醇。1-磷酸鞘氨醇在中枢神经系统中与G蛋白偶联受体家族结合对中枢神经系统发挥作用。本文对鞘磷脂代谢过程中的鞘氨醇激酶、1-磷酸鞘氨醇及其受体与脑缺血之间的关系进行概述。  相似文献   

9.
ENOX2 (tNOX), a tumor‐associated cell surface ubiquinol (NADH) oxidase, functions as an alternative terminal oxidase for plasma membrane electron transport. Ubiquitous in all cancer cell lines studied thus far, ENOX2 expression correlates with the abnormal growth and division associated with the malignant phenotype. ENOX2 has been proposed as the cellular target for various quinone site inhibitors that demonstrate anticancer activity such as the green tea constituent epigallocatechin‐3‐gallate (EGCg) and the isoflavene phenoxodiol (PXD). Here we present a possible mechanism that explains how these substances result in apoptosis in cancer cells by ENOX2‐mediated alterations of cytosolic amounts of NAD+ and NADH. When ENOX2 is inhibited, plasma membrane electron transport is diminished, and cytosolic NADH accumulates. We show in HeLa cells that NADH levels modulate the activities of two pivotal enzymes of sphingolipid metabolism: sphingosine kinase 1 (SK1) and neutral sphingomyelinase (nSMase). Their respective products sphingosine 1‐phosphate (S1P) and ceramide (Cer) are key determinants of cell fate. S1P promotes cell survival and Cer promotes apoptosis. Using plasma membranes isolated from cervical adenocarcinoma (HeLa) cells as well as purified proteins of both bacterial and human origin, we demonstrate that NADH inhibits SK1 and stimulates nSMase, while NAD+ inhibits nSMase and has no effect on SK1. Additionally, intact HeLa cells treated with ENOX2 inhibitors exhibit an increase in Cer and a decrease in S1P. Treatments that stimulate cytosolic NADH production potentiate the antiproliferative effects of ENOX2 inhibitors while those that attenuate NADH production or stimulate plasma membrane electron transport confer a survival advantage. J. Cell. Biochem. 110: 1504–1511, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
We examined the formation of sphingolipid mediators in platelets, which abundantly store, and release extracellularly, sphingosine 1-phosphate (Sph-1-P). Challenging [(3)H]Sph-labeled platelet suspensions with thrombin or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a decrease in Sph-1-P formation and an increase in sphingosine (Sph), ceramide (Cer), and sphingomyelin formation. Sph conversion into Cer, and Cer conversion into sphingomyelin were not affected upon activation, suggesting that Sph-1-P dephosphorylation may initiate the formation of sphingolipid signaling molecules. In fact, Sph-1-P phosphatase (but not lyase) activity was detected in platelets, but this activity was not enhanced by thrombin or TPA. When quantified with [(3)H]acetic anhydride acetylation, followed by HPLC separation, the amounts of Sph-1-P and Sph decreased and increased, respectively, upon stimulation with thrombin or TPA, and these changes were attenuated by staurosporine. Under these TPA treatment conditions, over half of the [(3)H]Sph-1-P (formed in platelets incubated with [(3)H]Sph) was detected extracellularly, possibly due to its release from platelets, which was completely inhibited by staurosporine pretreatment. Furthermore, when TPA-induced Sph-1-P release was blocked by staurosporine after the stimulation, the extracellular [(3)H]Sph-1-P radioactivity decreased, suggesting that the Sph-1-P released may undergo dephosphorylation extracellularly. To support this, [(32)P]Sph-1-P, when added extracellularly to platelet suspensions, was rapidly degraded, possibly due to the ecto-phosphatase activity. Our results suggest the presence in anucleate platelets of a transmembrane cycling pathway starting with Sph-1-P dephosphorylation and leading to the formation of other sphingolipid mediators.  相似文献   

11.
12.
13.
The bioactive molecule sphingosine 1-phosphate (S1P) is abundantly stored in platelets and can be released extracellularly. However, although they have high sphingosine (Sph) kinase activity, platelets lack the de novo sphingolipid biosynthesis necessary to provide the substrates. Here, we reveal a generation pathway for Sph, the precursor of S1P, in human platelets. Platelets incorporated extracellular 3H-labeled Sph much faster than human megakaryoblastic cells and rapidly converted it to S1P. Furthermore, Sph formed from plasma sphingomyelin (SM) by bacterial sphingomyelinase (SMase) and neutral ceramidase (CDase) was rapidly incorporated into platelets and converted to S1P, suggesting that platelets use extracellular Sph as a source of S1P. Platelets abundantly express SM, possibly supplied from plasma lipoproteins, at the cell surface. Treating platelets with bacterial SMase resulted in Sph generation at the cell surface, conceivably by the action of membrane-bound neutral CDase. Simultaneously, a time-dependent increase in S1P levels was observed. Finally, we demonstrated that secretory acid SMase also induces S1P increases in platelets. In conclusion, our results suggest that in platelets, Sph is supplied from at least two sources: generation in the plasma followed by incorporation, and generation at the outer leaflet of the plasma membrane, initiated by cell surface SM degradation.  相似文献   

14.
Many papers have shown that sphingolipids control the balance in cells between growth and proliferation, and cell death by apoptosis. Sphingosine-1-phosphate (Sph1P) and glucosylceramide (GlcCer) induce proliferation processes, and ceramide (Cer), a metabolic intermediate between the two, induces apoptosis. In cancers, the balance seems to have come undone and it should be possible to kill the cells by enhancing the processes that lead to ceramide accumulation. The two control systems are intertwined, modulated by a variety of agents affecting the activities of the enzymes in Cer-GlcCer-Sph1P interdependence. It is proposed that successful cancer chemotherapy requires the use of many agents to elevate ceramide levels adequately. This review updates current knowledge of sphingolipid metabolism and some of the evidence showing that ceramide plays a causal role in apoptosis induction, as well as a chemotherapeutic agent.  相似文献   

15.
During the last few years, it has become clear that sphingolipids are sources of important signalling molecules. Particularly, the sphingolipid metabolites, ceramide and S1P, have emerged as a new class of potent bioactive molecules, implicated in a variety of cellular processes such as cell differentiation, apoptosis, and proliferation. Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for the bioactive products. Ceramide is formed from SM by the action of sphingomyelinases (SMase), however, ceramide can be very rapidly hydrolysed, by ceramidases to yield sphingosine, and sphingosine can be phosphorylated by sphingosine kinase (SphK) to yield S1P. In immune cells, the sphingolipid metabolism is tightly related to the main stages of immune cell development, differentiation, activation, and proliferation, transduced into physiological responses such as survival, calcium mobilization, cytoskeletal reorganization and chemotaxis. Several biological effectors have been shown to promote the synthesis of S1P, including growth factors, cytokines, and antigen and G-protein-coupled receptor agonists. Interest in S1P focused recently on two distinct cellular actions of this lipid, namely its function as an intracellular second messenger, capable of triggering calcium release from internal stores, and as an extracellular ligand activating specific G protein-coupled receptors. Inhibition of SphK stimulation strongly reduced or even prevented cellular events triggered by several proinflammatory agonists, such as receptor-stimulated DNA synthesis, Ca(2+) mobilization, degranulation, chemotaxis and cytokine production. Another very important observation is the direct role played by S1P in chemotaxis, and cellular escape from apoptosis. As an extracellular mediator, several studies have now shown that S1P binds a number of G-protein-coupled receptors (GPCR) encoded by endothelial differentiation genes (EDG), collectively known as the S1P-receptors. Binding of S1P to these receptors trigger an wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibres, and inhibition of apoptosis induced by either ceramide or growth factor withdrawal. Moreover, blocking S1P1-receptor inhibits lymphocyte egress from lymphatic organs. This review summarises the evidence linking SphK signalling pathway to immune-cell activation and based on these data discuss the potential for targeting SphKs to suppress inflammation and other pathological conditions.  相似文献   

16.
Recent studies suggest that sphingolipid metabolism is altered during type 2 diabetes. Increased levels of the sphingolipid ceramide are associated with insulin resistance. However, a role for sphingolipids in pancreatic beta cell function, or insulin production, and release remains to be established. Our studies in MIN6 cells and mouse pancreatic islets demonstrate that glucose stimulates an intracellular rise in the sphingolipid, sphingosine 1-phosphate (S1P), whereas the levels of ceramide and sphingomyelin remain unchanged. The increase in S1P levels by glucose is due to activation of sphingosine kinase 2 (SphK2). Interestingly, rises in S1P correlate with increased glucose-stimulated insulin secretion (GSIS). Decreasing S1P levels by treatment of MIN6 cells or primary islets with the sphingosine kinase inhibitor reduces GSIS. Moreover, knockdown of SphK2 alone results in decreased GSIS, whereas knockdown of the S1P phosphatase, Sgpp1, leads to a rise in GSIS. Treatment of mice with the sphingosine kinase inhibitor impairs glucose disposal due to decreased plasma insulin levels. Altogether, our data suggest that glucose activates SphK2 in pancreatic beta cells leading to a rise in S1P levels, which is important for GSIS.  相似文献   

17.
We used a HPLC-MS/MS methodology for determination of a basic metabolomic profile (18:1,18:0 sphingoid backbone, C14-C26 N-acyl part) of “normal” sphingolipid levels in human serum and plasma. Blood was collected from healthy males and nonpregnant females under fasting and nonfasting conditions with and without anticoagulants. Sphingolipids analyzed included sphingoid bases, sphingosine and dihydrosphingosine, their 1-phosphates (S1P and dhS1P), molecular species (Cn-) of ceramide (Cer), sphingomyelin (SM), hexosylceramide (HexCer), lactosylceramide (LacCer), and Cer 1-phosphate (Cer1P). SM, LacCer, HexCer, Cer, and Cer1P constituted 87.7, 5.8, 3.4, 2.8, and 0.15% of total sphingolipids, respectively. The abundant circulating SM was C16-SM (64.0 µM), and it increased with fasting (100 µM). The abundant LacCer was C16-LacCer (10.0 µM) and the abundant HexCer was C24-HexCer (2.5 µM). The abundant Cer, C24-Cer (4.0 µM), was not influenced by fasting; however, levels of C16-C20 Cers were decreased in response to fasting. S1P levels were higher in serum than plasma (0.68 µM vs. 0.32 µM). We also determined levels of sphingoid bases and SM species in isolated lipoprotein classes. HDL3 was the major carrier of S1P, dhS1P, and Sph, and LDL was the major carrier of Cer and dhSph. Per particle, VLDL contained the highest levels of SM, Cer, and S1P. HPLC-MS/MS should provide a tool for clinical testing of circulating bioactive sphingolipids in human blood.  相似文献   

18.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), formed by phosphorylation of sphingosine, has been implicated in cell growth, suppression of apoptosis, and angiogenesis. In this study, we have examined the contribution of intracellular S1P to tumorigenesis of breast adenocarcinoma MCF-7 cells. Enforced expression of sphingosine kinase type 1 (SPHK1) increased S1P levels and blocked MCF-7 cell death induced by anti-cancer drugs, sphingosine, and TNF-alpha. SPHK1 also conferred a growth advantage, as determined by proliferation and growth in soft agar, which was estrogen dependent. While both ERK and Akt have been implicated in MCF-7 cell growth, SPHK1 stimulated ERK1/2 but had no effect on Akt. Surprisingly, parental growth of MCF-7 cells was only weakly stimulated by S1P or dihydro-S1P, ligands for the S1P receptors which usually mediate growth effects. When injected into mammary fat pads of ovariectomized nude mice implanted with estrogen pellets, MCF-7/SPHK1 cells formed more and larger tumors than vector transfectants with higher microvessel density in their periphery. Collectively, our results suggest that SPHK1 may play an important role in breast cancer progression by regulating tumor cell growth and survival.  相似文献   

19.
Glioblastomas (GBMs) are very aggressive tumors with low chemosensitivity. The DNA-alkylating agent temozolomide (TMZ) is currently the most efficient chemotoxic drug for GBM therapy; however, many patients develop resistance to TMZ. Combining TMZ with another agent could present an improved treatment option if it could overcome TMZ resistance and avoid side effects. Sphingosine kinase inhibitors (SKIs) have emerged as anticancer agents. Sphingosine kinases are often overexpressed in tumors where their activity of phosphorylating sphingosine (Sph) contributes to tumor growth and migration. They control the levels of the pro-apoptotic ceramide (Cer) and Sph and of the pro-survival sphingosine-1 phosphate. In the present work, TMZ was combined with a specific SKI, and the cytotoxic effect of each drug alone or in combination was tested on GBM cell lines. The combination of sublethal doses of both agents resulted in the cell death potentiation of GBM cell lines without affecting astrocyte viability. It triggered a caspase-3-dependent cell death that was preceded by accumulation of dihydrosphingosine (dhSph) and dihydroceramide (dhCer), oxidative stress, endoplasmic reticulum stress, and autophagy. Autophagy was identified as the crucial switch that facilitated induction of this cell death potentiation. The sublethal dose of the inhibitor induced these stress events, whereas that of TMZ induced the destructive autophagy switch. Remarkably, neither Cer nor Sph, but rather the Cer intermediates, dhSph and dhCer, was involved in the cytotoxicity from the combination. Cell lines sensitive to the combination expressed low levels of the antioxidant enzyme glutathione peroxidase-1, indicating this enzyme as a potential marker of sensitivity to such treatment. This work shows for the first time a strong interaction between a SKI and TMZ, leading to a tumor cell-specific death induction. It further demonstrates the biological relevance of dihydrosphingolipids in cell death mechanisms and emphasizes the potential of drugs that affect sphingolipid metabolism for cancer therapy.Glioblastoma (GBM) is a devastating cancer with poor prognosis. The DNA-alkylating agent temozolomide (TMZ) is currently the most efficient drug in GBM therapy; however, not all patients benefit from TMZ and those who initially do benefit become resistant to TMZ over time, pointing out the urgent need for novel therapies.1,2 Modulating the metabolism of bioactive sphingolipids has been shown to have a potential in treating malignancies.3 Particularly, inhibitors of the sphingosine kinases (SK) emerge as interesting anticancer agents.4 SK exist as two isoforms, SK1 mainly found in the cytoplasm and SK2 found in the nucleus. Pro-survival as well as pro-apoptotic effects have been reported for both isoforms.5 These enzymes have a central role in the so-called ‘sphingolipid rheostat'' as they control the balance between the levels of the sphingolipids ceramide (Cer), sphingosine (Sph), and sphingosine-1 phosphate (S1P). As such, they control cell fate by regulating the relative amounts of pro-apoptotic Cer and Sph to pro-survival S1P.6 S1P acts extracellularly as a ligand to S1P receptors, leading to increased tumor cell migration and proliferation.7,8 Thus, blocking SK with a specific inhibitor would not only decrease the levels of S1P and hence tumor migration, but also lead to an increase in Cer and Sph, thereby inducing cell death. In various studies (reviewed in Heffernan-Stroud and Obeid9), pharmacological SK inhibitors were reported to sensitize cells towards chemotoxic drugs such as doxorubicin and etoposide, to decrease viability and to reduce migration in different tumor cell lines, including TMZ-resistant GBM cell lines.10 We have previously shown that the sphingosine kinase inhibitor (SKI)-II,11 which inhibits both SK1 and SK2,4 induced death in murine and human GBM cells but not in normal and non-transformed astrocytes.12On the basis of these observations, we hypothesize that a combination of low doses of TMZ and SKI-II may overcome TMZ resistance and lead to a tumor-specific cell death. In GBM cells, TMZ was reported to induce a late apoptosis triggered by O6-methylguanine lesion,13,14 mitotic catastrophe,15 and autophagy.16 The death mechanisms triggered by SKI have not been characterized in detail, except for the role of pro-apoptotic Cer,17 of which the concentration is expected to rise after SK inhibition. Interference with sphingolipid metabolism is expected to induce cellular stress at the various organelles where sphingolipids are generated or metabolized (endoplasmic reticulum (ER), mitochondria, lysosome).18 We reported that SKI-II induces lysosome stress in GBM cells, as indicated by lysosome enlargement and subsequent cell death.12In this report, we show that a combination of sublethal doses of SKI-II and TMZ triggers a significant increase in death of human GBM cells but not of human astrocytes. We identify the steps induced by SKI-II, TMZ, and both combined thatlead to this specific cell death.  相似文献   

20.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号