首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray crystal structure of the mono-hydrate of 2,2-bis(imidazol-1-ylmethyl)-4-methylphenol has been determined. Three hydrogen bonds hold water very tightly in the crystal, as determined by deuterium solid-state NMR. The hydrogen bond between the phenolic hydroxyl and water appears to have about the same strength as the direct hydrogen bond to imidazole, suggesting that the structure can be a good model for hydrogen bonds that are mediated by a water molecule in enzymes.  相似文献   

2.
The crystal structure of 5-nitrouridine was determined by X-ray analysis. The pyrimidine ring is slightly non-planar, showing a shallow boat conformation. The nitro group has no influence on the C4 - O4 bond length as compared to uridine. The ribose shows the C3'-endo conformation and the base is in the anti orientation to the sugar with a torsion angle of 25.6 degrees. This conformation is stabilized by a hydrogen bond from the base to the ribosyl moiety (H6 ... 05'). Stacking interactions between neighboring bases are almost negligible in the crystal. A water molecule is involved in a bifurcated donating hydrogen bond to 04 and to 052 of the nitro group of the one base and an accepting bond from the H3 of the other base. Two more hydrogen bonds are formed between the water molecule and the ribose. The structural aspects of 5-nitrouridine are discussed with respect to the special stacking features found for 5-nitro-1-(beta-D-ribosyluronic acid)-uracil monohydrate in the crystal (1).  相似文献   

3.
The X-ray diffraction analysis of N-o-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (1), N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, N-p-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, and their N-acetyl derivatives was performed. The sugar moieties always adopt 4C1 conformations, however, due to crystal packing forces they are always slightly distorted. It was found that except N-acetyl, N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (5), none of the glucopyranosylamines studied in this paper form strong hydrogen bonds in the crystal lattice. Additionally, (5) crystallizes with a molecule of water, which occupies a special crystallographic position (on the twofold axis) and links two sugar molecules by hydrogen bonds. The CP MAS NMR spectra confirmed the presence of the intermolecular hydrogen bond involving the molecule of water in (5). Moreover, it was proved that in (1) an intramolecular hydrogen bond is formed between the glycosidic linkage and the nitro group.  相似文献   

4.
Single crystal structures of host-guest peptides, (Pro-Hyp-Gly)(4)-Leu-Hyp-Gly-(Pro-Hyp-Gly)(5) (LOG1) and (Pro-Hyp-Gly)(4)- (Leu-Hyp-Gly)(2)-(Pro-Hyp-Gly)(4) (LOG2), have been determined at 1.6 A and 1.4 A resolution, respectively. In these crystals, the side chain conformations of the Leu residues were (+)gauche-trans. This conformational preference for the Leu side chain in the Leu-Hyp-Gly sequence was explained by stereochemical considerations together with statistical analysis of Protein Data Bank data. In the (+)gauche-trans conformation, the Leu side chain can protrude along the radial direction of the rod-like triple-helical molecule. One strong hydrophobic interaction of the Leu residue was observed between adjacent molecules in the LOG2 crystal. Because the Leu-Hyp-Gly sequence is one of the most frequently occurring triplets in Type I collagen, this strong hydrophobic interaction can be expected in a fibrillar structure of native collagen. All the Leu residues in the asymmetric unit of the LOG1 and LOG2 crystals had water molecules hydrogen bonded to their NH. These water molecules made three additional hydrogen bonds with the Hyp OH, the Gly O[double bond]C, and a water molecule in the second hydration shell, forming a tetrahedral coordination of hydrogen bonds, which allows a smaller mean-square displacement factor of this water oxygen atom than those of other water molecules. These hydrogen bonds stabilize the molecular and packing structures by forming one O[double bond]C(Gly)---W---OH(Hyp) intra-molecular linkage and two NH(Leu)---W---O[double bond]C(Gly) and NH(Leu)---W---OH(Hyp) inter-molecular linkages.  相似文献   

5.
Energetics of hydrogen bonding in proteins: a model compound study.   总被引:9,自引:6,他引:3       下载免费PDF全文
Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-amide hydrogen bond is about twice that of the amide-hydroxyl. Additionally, the interaction of the hydroxyl group with water is seen most readily in its contributions to entropy and heat capacity changes. Surprisingly, the hydroxyl group shows weakly hydrophobic behavior in terms of these contributions. These results can be used to understand the effects of mutations on the stability of globular proteins.  相似文献   

6.
The X-ray diffraction analysis, (13)C CP MAS NMR spectra and powder X-ray diffraction patterns were obtained for selected methyl glycosides: alpha- and beta-d-lyxopyranosides (1, 2), alpha- and beta-l-arabinopyranosides (3, 4), alpha- and beta-d-xylopyranosides (5, 6) and beta-d-ribopyranoside (7) and the results were confirmed by GIAO DFT calculations of shielding constants. In X-ray diffraction analysis of 1 and 2, a characteristic shortening and lengthening of selected bonds was observed in molecules of 1 due to anomeric effect and, in crystal lattice of 1 and 2, hydrogen bonds of different patterns were present. Also, an additional intramolecular hydrogen bond with the participation of ring oxygen atom was observed in 1. The observed differences in chemical shifts between solid state and solution come from conformational effects and formation of various intermolecular hydrogen bonds. The changes in chemical shifts originating from intermolecular hydrogen bonds were smaller in magnitude than conformational effects. Furthermore, the powder X-ray diffraction (PXRD) performed for 4, 5 and 7 revealed that 7 existed as a mixture of two polymorphs, and one of them probably consisted of two non-equivalent molecules.  相似文献   

7.
This year marks the 50th anniversary of the coiled-coil triple helical structure of collagen, first proposed by Ramachandran's group from Madras. The structure is unique among the protein secondary structures in that it requires a very specific tripeptide sequence repeat, with glycine being mandatory at every third position and readily accommodates the imino acids proline/hydroxyproline, at the other two positions. The original structure was postulated to be stabilized by two interchain hydrogen bonds, per tripeptide. Subsequent modeling studies suggested that the triple helix is stabilized by one direct inter chain hydrogen bond as well as water mediated hydrogen bonds. The hydroxyproline residues were also implicated to play an important role in stabilizing the collagen fibres. Several high resolution crystal structures of oligopeptides related to collagen have been determined in the last ten years. Stability of synthetic mimics of collagen has also been extensively studied. These have confirmed the essential correctness of the coiled-coil triple helical structure of collagen, as well as the role of water and hydroxyproline residues, but also indicated additional sequence-dependent features. This review discusses some of these recent results and their implications for collagen fiber formation.  相似文献   

8.
Three-dimensional structures of trypsin with the reversible inhibitor leupeptin have been determined in two different crystal forms. The first structure was determined at 1.7 A resolution with R-factor = 17.7% in the trigonal crystal space group P3(1)21, with unit cell dimensions of a = b = 55.62 A, c = 110.51 A. The second structure was determined at a resolution of 1.8 A with R-factor = 17.5% in the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions of a = 63.69 A, b = 69.37 A, c = 63.01 A. The overall protein structure is very similar in both crystal forms, with RMS difference for main-chain atoms of 0.27 A. The leupeptin backbone forms four hydrogen bonds with trypsin and a fifth hydrogen bond interaction is mediated by a water molecule. The aldehyde carbonyl of leupeptin forms a covalent bond of 1.42 A length with side-chain oxygen of Ser-195 in the active site. The reaction of trypsin with leupeptin proceeds through the formation of stable tetrahedral complex in which the hemiacetal oxygen atom is pointing out of the oxyanion hole and forming a hydrogen bond with His-57.  相似文献   

9.
细胞色素b6f蛋白复合体(Cyt b6f)参与光合膜上电子传递和跨膜质子转移,在体内以二体形式存在,每个单体只结合1分子叶绿素a(Chla).该Chla性质独特,光照条件下十分稳定,是甲醇中游离Chla的120~130倍,然而其光稳定性的机制仍未彻底阐明.Cyt b6f 2.7的晶体结构显示,Chla中心的Mg离子和H2O分子配位,并且该H2O分子通过氢键与复合体亚基Ⅳ的氨基酸G136和T137相互作用.本研究基于这一结构特点,对上述2个氨基酸进行了定点突变,以干扰、破坏氢键网络.结果发现,突变不仅导致蛋白与Chla结合能力下降,而且显著降低了Chla的光稳定性,这一结果表明,Cyt b6f中Chla相关的氢键网络对其稳定性具有重要的作用.  相似文献   

10.
We have performed a multivariate logistic regression analysis to establish a statistical correlation between the structural properties of water molecules in the binding site of a free protein crystal structure, with the probability of observing the water molecules in the same location in the crystal structure of the ligand-complexed form. The temperature B-factor, the solvent-contact surface area, the total hydrogen bond energy and the number of protein-water contacts were found to discriminate between bound and displaceable water molecules in the best regression functions obtained. These functions may be used to identify those bound water molecules that should be included in structure-based drug design and ligand docking algorithms.FIGURE The binding site ( thin sticks) of penicillopepsin (3app) with its crystallographically determined water molecules ( spheres) and superimposed ligand (in thick sticks, from complexed structure 1ppk). Water molecules sterically displaced by the ligand upon complexation are shown in cyan. Bound water molecules are shown in blue. Displaced water molecules are shown in yellow. Water molecules removed from the analysis due to a lack of hydrogen bonds to the protein are shown in white. WaterScore correctly predicted waters in blue as Probability=1 to remain bound and waters in yellow as Probability<1x10(-20) to remain bound.  相似文献   

11.
To further examine the contribution of hydrogen bonds to the conformational stability of the human lysozyme, six Ser to Ala mutants were constructed. The thermodynamic parameters for denaturation of these six Ser mutant proteins were investigated by differential scanning calorimetry (DSC), and the crystal structures were determined by X-ray analysis. The denaturation Gibbs energy (DeltaG) of the Ser mutant proteins was changed from 2.0 to -5.7 kJ/mol, compared to that of the wild-type protein. With an analysis in which some factors that affected the stability due to mutation were considered, the contribution of hydrogen bonds to the stability (Delta DeltaGHB) was extracted on the basis of the structures of the mutant proteins. The results showed that hydrogen bonds between protein atoms and between a protein atom and a water bound with the protein molecule favorably contribute to the protein stability. The net contribution of one intramolecular hydrogen bond to protein stability (DeltaGHB) was 8.9 +/- 2.6 kJ/mol on average. However, the contribution to the protein stability of hydrogen bonds between a protein atom and a bound water molecule was smaller than that for a bond between protein atoms.  相似文献   

12.
The crystal structure of the RNA octamer, 5'-GGCGUGCC-3' has been determined from x-ray diffraction data to 1.5 angstroms resolution. In the crystal, this oligonucleotide forms five self-complementary double-helices in the asymmetric unit. Tandem 5'GU/3'UG basepairs comprise an internal loop in the middle of each duplex. The NMR structure of this octameric RNA sequence is also known, allowing comparison of the variation among the five crystallographic duplexes and the solution structure. The G.U pairs in the five duplexes of the crystal form two direct hydrogen bonds and are stabilized by water molecules that bridge between the base of guanine (N2) and the sugar (O2') of uracil. This contrasts with the NMR structure in which only one direct hydrogen bond is observed for the G.U pairs. The reduced stability of the r(CGUG)2 motif relative to the r(GGUC)2 motif may be explained by the lack of stacking of the uracil bases between the Watson-Crick and G.U pairs as observed in the crystal structure.  相似文献   

13.
Acetyl thioalanine N-methyl (Ac-Alat-NHMe) and thioacetyl alanine N-methyl (Act-Ala-NHMe) were synthesized, crystallized and their X-ray diffraction structures determined for the first time. Both molecules adopted beta-sheet conformations and showed similar hydrogen bonding patterns with one molecular surface forming two oxo hydrogen bonds and the other forming two thio hydrogen bonds. The crystal structure data for the two thioamides provided a validation of the thioamide parameters for the newly derived CFF91 force field because the observed crystal (phi, psi) angles were situated in the global minimum regions of the theoretical (phi, psi) map predicted using the parameters. In addition, the parameters were further validated because conformational energy minimization of the crystal structure produced low deviations in unit cell dimensions, bond lengths, bond angles and torsional angles, and a 120-ps molecular dynamics simulation also gave a low deviation for the most probable N-H...S=C bond distance.  相似文献   

14.
The results of a survey of 439 hydrogen bonds in 95 recently determined crystal structures of amino acids, peptides and related molecules suggest that the following generalizations hold true for linear (angle X-H---Y greater than 150 degrees) hydrogen bonds. (1) The charge on the acceptor group does not influence the length of a hydrogen bond. (2) For a given acceptor group, the hydrogen bond lengths increase in the order imidazolium N--H less than ammonium N-H less than guanidinium N-H; this order holds true for oxygen anion acceptor groups. Cl-ions and the uncharged oxygen of water molecules. (3) The uncharged imidazole N-H group forms shorter hydrogen than the amide N-H GROUP. (4) The carboxyl O-H groups form shorter hydrogen bonds than other hydroxyl groups. (5) The hydrogen bonds involving a halogen ion are longer than hydrogen bonds with other acceptors when corrected for their longer van der Walls radii. The observed differences between the lengths of hydrogen bonds formed by different donor and acceptor groups in amino acids and peptides, imply differences in the energetics of their formation.  相似文献   

15.
Molecular dynamics simulations of ion channel peptides alamethicin and melittin, solvated in methanol at 27 degrees C, were run with either regular alpha-helical starting structures (alamethicin, 1 ns; melittin 500 ps either with or without chloride counterions), or with the x-ray crystal coordinates of alamethicin as a starting structure (1 ns). The hydrogen bond patterns and stabilities were characterized by analysis of the dynamics trajectories with specified hydrogen bond angle and distance criteria, and were compared with hydrogen bond patterns and stabilities previously determined from high-resolution NMR structural analysis and amide hydrogen exchange measurements in methanol. The two alamethicin simulations rapidly converged to a persistent hydrogen bond pattern with a high level of 3(10) hydrogen bonding involving the amide NH's of residues 3, 4, 9, 15, and 18. The 3(10) hydrogen bonds stabilizing amide NH's of residues C-terminal to P2 and P14 were previously proposed to explain their high amide exchange stabilities. The absence, or low levels of 3(10) hydrogen bonds at the N-terminus or for A15 NH, respectively, in the melittin simulations, is also consistent with interpretations from amide exchange analysis. Perturbation of helical hydrogen bonding in the residues before P14 (Aib10-P14, alamethicin; T11-P14, melittin) was characterized in both peptides by variable hydrogen bond patterns that included pi and gamma hydrogen bonds. The general agreement in hydrogen bond patterns determined in the simulations and from spectroscopic analysis indicates that with suitable conditions (including solvent composition and counterions where required), local hydrogen-bonded secondary structure in helical peptides may be predicted from dynamics simulations from alpha-helical starting structures. Each peptide, particularly alamethicin, underwent some large amplitude structural fluctuations in which several hydrogen bonds were cooperatively broken. The recovery of the persistent hydrogen bonding patterns after these fluctuations demonstrates the stability of intramolecular hydrogen-bonded secondary structure in methanol (consistent with spectroscopic observations), and is promising for simulations on extended timescales to characterize the nature of the backbone fluctuations that underlie amide exchange from isolated helical polypeptides.  相似文献   

16.
The crystal structure of a periplasmic l-aspartate/l-glutamate binding protein (DEBP) from Shigella flexneri complexed with an l-glutamate molecule has been determined and refined to an atomic resolution of 1.0 Å. There are two DEBP molecules in the asymmetric unit. The refined model contains 4462 non-hydrogen protein atoms, 730 water molecules, 2 bound glutamate molecules, and 2 Tris molecules from the buffer used in crystallization. The final Rcryst and Rfree factors are 13.61% and 16.89%, respectively. The structure has root-mean-square deviations of 0.016 Å from standard bond lengths and 2.35° from standard bond angles.The DEBP molecule is composed of two similarly folded domains separated by the ligand binding region. Both domains contain a central five-stranded β-sheet that is surrounded by several α-helices. The two domains are linked by two antiparallel β-strands. The overall shape of DEBP is that of an ellipsoid approximately 55 Å × 45 Å × 40 Å in size.The binding of ligand to DEBP is achieved mostly through hydrogen bonds between the glutamate and side-chain and main-chain groups of DEBP. Side chains of residues Arg24, Ser72, Arg75, Ser90, and His164 anchor the deprotonated γ-carboxylate group of the glutamate with six hydrogen bonds. Side chains of Arg75 and Arg90 form salt bridges with the deprotonated α-carboxylate group, while the main-chain amide groups of Thr92 and Thr140 form hydrogen bonds with the same group. The positively charged α-amino group of the l-glutamate forms salt bridge interaction with the side-chain carboxylate group of Asp182 and hydrogen bond interaction with main-chain carbonyl oxygen of Ser90. In addition to these hydrogen bond and electrostatic interactions, other interactions may also play important roles. For example, the two methylene groups from the glutamate form van der Waals interactions with hydrophobic side chains of DEBP.Comparisons with several other periplasmic amino acid binding proteins indicate that DEBP residues involved in the binding of α-amino and α-carboxylate groups of the ligand and the pattern of hydrogen bond formation between these groups are very well conserved, but the binding pocket around the ligand side chain is not, leading to the specificity of DEBP. We have identified structural features of DEBP that determine its ability of binding glutamate and aspartate, two molecules with different sizes, but discriminating against very similar glutamine and asparagine molecules.  相似文献   

17.
The synthesis and crystal structure of co-crystal between bis(dithiobiureto)platinum(II) ([Pt(dtb)2]) with thymine is reported. The crystalline structure of [Pt(dtb)2](thymine)2 shows two-dimensional arrays created by hydrogen-bonding interactions. One mononuclear complex and two thymine molecules form a building unit connected by triple hydrogen bond employing ADA-DAD arrangements (A, hydrogen bond acceptor; D, hydrogen bond donor). The building unit is linked to adjacent units via additional hydrogen bonds to form planar sheet.  相似文献   

18.
(Pro-Pro-Gly)10 [(PPG10)], a collagen-like polypeptide, forms a triple-helical, polyproline-II structure in aqueous solution at temperatures somewhat lower than physiological, with a melting temperature of 24.5 degrees C. In this article, we present circular dichroism spectra that demonstrate an increase of the melting temperature with the addition of increasing amounts of D2O to an H2O solution of (PPG)10, with the melting temperature reaching 40 degrees C in pure D2O. A thermodynamic analysis of the data demonstrates that this result is due to an increasing enthalpy of unfolding in D2O vs. H2O. To provide a theoretical explanation for this result, we have used a model for hydration of (PPG)10 that we developed previously, in which inter-chain water bridges are formed between sterically crowded waters and peptide bond carbonyls. Energy minimizations were performed upon this model using hydrogen bond parameters for water, and altered hydrogen bond parameters that reproduced the differences in carbonyl oxygen-water oxygen distances found in small-molecule crystal structures containing oxygen-oxygen hydrogen bonds between organic molecules and H2O or D2O. It was found that using hydrogen bond parameters that reproduced the distance typical of hydrogen bonds to D2O resulted in a significant lowering of the potential energy of hydrated (PPG)10. This lowering of the energy involved energetic terms that were only indirectly related to the altered hydrogen bond parameters, and were therefore not artifactual; the intra-(PPG10) energy, plus the water-(PPG10) van der Waals energy (not including hydrogen bond interactions), were lowered enough to qualitatively account for the lower enthalpy of the triple-helical conformation, relative to the unfolded state, in D2O vs. H2O. This result indicates that the geometry of the carbonyl-D2O hydrogen bonds allows formation of good hydrogen bonds without making as much of an energetic sacrifice from other factors as in the case of hydration by H2O.  相似文献   

19.
The complete crystal structure (including hydrogen) of dihydrate β-chitin, a homopolymer of N-acetylglucosamine hydrate, was determined using high-resolution X-ray and neutron fiber diffraction data collected from bathophilous tubeworm Lamellibrachia satsuma. Two water molecules per N-acetylglucosamine residue are clearly localized in the structure and these participate in most of the hydrogen bonds. The conformation of the labile acetamide groups and hydroxymethyl groups are similar to those found in anhydrous β-chitin, but more relaxed. Unexpectedly, the intrachain O3-H...O5 hydrogen bond typically observed for crystalline β,1-4 glycans is absent, providing important insights into its relative importance and its relationship to solvation.  相似文献   

20.
Sarkhel S  Desiraju GR 《Proteins》2004,54(2):247-259
The characteristics of N-H...O, O-H...O, and C-H...O hydrogen bonds are examined in a group of 28 high-resolution crystal structures of protein-ligand complexes from the Protein Data Bank and compared with interactions found in small-molecule crystal structures from the Cambridge Structural Database. It is found that both strong and weak hydrogen bonds are involved in ligand binding. Because of the prevalence of multifurcation, the restrictive geometrical criteria set up for hydrogen bonds in small-molecule crystal structures may need to be relaxed in macromolecular structures. For example, there are definite deviations from linearity for the hydrogen bonds in protein-ligand complexes. The formation of C-H...O hydrogen bonds is influenced by the activation of the C(alpha)-H atoms and by the flexibility of the side-chain atoms. In contrast to small-molecule structures, anticooperative geometries are common in the macromolecular structures studied here, and there is a gradual lengthening as the extent of furcation increases. C-H...O bonds formed by Gly, Phe, and Tyr residues are noteworthy. The numbers of hydrogen bond donors and acceptors agree with Lipinski's "rule of five" that predicts drug-like properties. Hydrogen bonds formed by water are also seen to be relevant in ligand binding. Ligand C-H...O(w) interactions are abundant when compared to N-H...O(w) and O-H...O(w). This suggests that ligands prefer to use their stronger hydrogen bond capabilities for use with the protein residues, leaving the weaker interactions to bind with water. In summary, the interplay between strong and weak interactions in ligand binding possibly leads to a satisfactory enthalpy-entropy balance. The implications of these results to crystallographic refinement and molecular dynamics software are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号