共查询到9条相似文献,搜索用时 15 毫秒
1.
Here, we report that in the obligate aerobic yeast Yarrowia lipolytica, a protein exhibiting rhodanese (thiosulfate:cyanide sulfurtransferase) activity is associated with proton pumping NADH:ubiquinone oxidoreductase (complex I). Complex I is a key enzyme of the mitochondrial respiratory chain that contains eight iron-sulfur clusters. From a rhodanese deletion strain, we purified functional complex I that lacked the additional protein but was fully assembled and displayed no functional defects or changes in EPR signature. In contrast to previous suggestions, this indicated that the sulfurtransferase associated with Y. lipolytica complex I is not required for assembly of its iron-sulfur clusters. 相似文献
2.
Abdrakhmanova A Zwicker K Kerscher S Zickermann V Brandt U 《Biochimica et biophysica acta》2006,1757(12):1676-1682
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second beta-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function. 相似文献
3.
Volker Zickermann 《BBA》2007,1767(5):393-400
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b. 相似文献
4.
Acyl carrier proteins of mitochondria (ACPMs) are small (∼ 10 kDa) acidic proteins that are homologous to the corresponding central components of prokaryotic fatty acid synthase complexes. Genomic deletions of the two genes ACPM1 and ACPM2 in the strictly aerobic yeast Yarrowia lipolytica resulted in strains that were not viable or retained only trace amounts of assembled mitochondrial complex I, respectively. This suggested different functions for the two proteins that despite high similarity could not be complemented by the respective other homolog still expressed in the deletion strains. Remarkably, the same phenotypes were observed if just the conserved serine carrying the phosphopantethein moiety was exchanged with alanine. Although this suggested a functional link to the lipid metabolism of mitochondria, no changes in the lipid composition of the organelles were found. Proteomic analysis revealed that both ACPMs were tightly bound to purified mitochondrial complex I. Western blot analysis revealed that the affinity tagged ACPM1 and ACPM2 proteins were exclusively detectable in mitochondrial membranes but not in the mitochondrial matrix as reported for other organisms. Hence we conclude that the ACPMs can serve all their possible functions in mitochondrial lipid metabolism and complex I assembly and stabilization as subunits bound to complex I. 相似文献
5.
Xiaoping Yi 《FEBS letters》2009,583(12):2142-116
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of Photosystem II. A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Earlier we had documented significant alterations in a variety of Photosystem II parameters in these plant lines [Yi, X., Liu, H., Hargett, S. R., Frankel, L. K., Bricker, T. M. (2007). The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J. Biol. Chem. 34, 24833-24841]. In this communication, we document extensive defects in the thylakoid membrane architecture of these plants. Interestingly, strong interfering RNA suppression of the genes encoding the PsbQ protein (At4g21280 and At4g05180) was found to have no effect on the architecture of thylakoid membranes. 相似文献
6.
Waletko A Zwicker K Abdrakhmanova A Zickermann V Brandt U Kerscher S 《The Journal of biological chemistry》2005,280(7):5622-5625
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand. 相似文献
7.
Marion Babot Paola Labarbuta Amanda Birch Sara Kee Matthew Fuszard Catherine H. Botting Ilka Wittig Heinrich Heide Alexander Galkin 《BBA》2014
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover. 相似文献
8.
The ability of subunit C of eukaryotic V-ATPases to bind ADP and ATP is demonstrated by photoaffinity labeling and fluorescence correlation spectroscopy (FCS). Quantitation of the photoaffinity and the FCS data indicate that the ATP-analogues bind more weakly to subunit C than the ADP-analogues. Site-directed mutagenesis and N-terminal sequencing of subunit C from Arabidopsis (VHA-C) and yeast (Vma5p) have been used to map the C-terminal region of subunit C as the nucleotide-binding site. Tryptophan fluorescence quenching and decreased susceptibility to tryptic digestion of subunit C after binding of different nucleotides provides evidence for structural changes in this subunit caused by nucleotide-binding. 相似文献
9.
In cyanobacteria, Glu-244 and Tyr-246 of the Photosystem II (PS II) D1 protein are hydrogen bonded to two water molecules that are part of a hydrogen-bond network between the bicarbonate ligand to a non-heme iron and the cytosol. Ala substitutions were introduced in Synechocystis sp. PCC 6803 to investigate the roles of these residues and the hydrogen-bond network on electron transfer between the primary plastoquinone acceptor, QA, and the secondary plastoquinone acceptor, QB, of the quinone-Fe-acceptor complex. All mutants assembled PS II; however, an increase in the PS II to PS I ratio was apparent, particularly in the E244A:Y246A double mutant. The mutants also showed impaired oxygen evolution and retarded chlorophyll a fluorescence decays following single turnover actinic flashes, which appeared to be primarily due to reduced QB binding in the E244A strain and an enhanced back reaction with the S2 state of the oxygen-evolving complex in the Y246A mutant. Impaired PS II in the Y246A and E244A:Y246A mutants resulted in inactivation of the psbA gene encoding D1. The Y246A and E244A:Y246A mutants also showed high light sensitivity whereas the E244A mutant showed enhanced resilience towards photodamage. Unlike the control strain, all of the mutants were insensitive to the addition of formate or bicarbonate in assays following chlorophyll decay kinetics that reflect electron transfer between QA and QB, suggesting the bicarbonate binding environment was perturbed. Our data also indicate that waters W582 and W622 (PDB: 4UB6) have essential roles in maintaining the architecture of the acceptor side of PS II. 相似文献