首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, cell-penetrating peptides have proven to be an efficient intracellular delivery system. The mechanism for CPP internalisation, which first involves interaction with the extracellular matrix, is followed in most cases by endocytosis and finally, depending on the type of endocytosis, an intracellular fate is reached. Delivery of cargo attached to a CPP requires endosomal release, for which different methods have recently been proposed. Positively charged amino acids, hydrophobicity and/or amphipathicity are common to CPPs. Moreover, some CPPs can self-assemble. Herein is discussed the role of self assembly in the cellular uptake of CPPs. Sweet Arrow Peptide (SAP) CPP has been shown to aggregate by CD and TEM (freeze-fixation/freeze-drying), although the internalised species have yet to be identified as either the monomer or an aggregate.  相似文献   

2.
Basic peptides with vector abilities, so called cell-penetrating peptides (CPPs), have been reported to enter cells, carrying cargoes ranging from oligonucleotides and proteins to nanoparticles. In this study we present novel CPPs derived from the gamma-secretase complex, which is involved in the amyloidogenic processing of the amyloid precursor protein (APP) and one of the major research targets for Alzheimer’s disease therapeutics today. In order to examine the uptake efficiency and internalization mechanism of these novel CPPs, side-by-side comparison with the well characterized CPPs penetratin and tat were made. For assessment of the CPP uptake mechanism, endocytosis inhibitors, endosomal markers and cells deficient in the expression of glycosaminoglycans were used. Also, in order to determine the vector ability of the peptides, protein delivery was quantified.We demonstrate the uptake of the gamma-secretase derived CPPs, in accordance to penetratin and tat, to be largely dependent on temperature and initial binding to cell-surface glycosaminoglycans. After this initial step, there is a discrepancy in the mechanism of uptake, where all peptides, except one, is taken up by a PI 3-kinase dependent fluid phase endocytosis, which could be inhibited by wortmannin. Also, by using endosomal markers and protein delivery efficacy, we conclude that the pathway of internalization for different CPPs could determine the possible cargo size for which they can be used as a vector. The, in this study demonstrated, cell-penetrating properties of the gamma-secretase constituents could prove to be of importance for the gamma-secretase function, which is a matter of further investigation.  相似文献   

3.
Rullo A  Qian J  Nitz M 《Biopolymers》2011,95(10):722-731
Glycosaminoglycans (GAGs) affect the efficiency of cellular uptake of a wide range of cell penetrating peptides (CPPs). GAGs have been proposed to cluster with CPPs at the cell surface before uptake but little is known about the formation or stability of CPP-GAG clusters. Here we apply a combination of heparin affinity chromatography, dynamic light scattering, and fluorescence spectroscopy to characterize the formation, stability, and size of the clusters formed between CPPs and heparin. Under conditions similar to those used in cell uptake experiments the CPP, penetratin (Antp), was observed to form significantly more stable clusters with heparin than the CPP TAT, despite TAT showing a comparable affinity for heparin. This difference in cluster stability may explain the origins of the preferred cell uptake pathways followed by Antp and TAT, and may be an important parameter for optimizing the efficiency of designed CPP delivery vectors.  相似文献   

4.
Cell-penetrating peptides (CPPs) gain access to intracellular compartments mainly via endocytosis and have capacity to deliver macromolecular cargo into cells. Although the involvement of various endocytic routes has been described it is still unclear which interactions are involved in eliciting an uptake response and to what extent affinity for particular cell surface components may determine the efficiency of a particular CPP. Previous biophysical studies of the interaction between CPPs and either lipid vesicles or soluble sugar-mimics of cell surface proteoglycans, the two most commonly suggested CPP binding targets, have not allowed quantitative correlations to be established. We here explore the use of plasma membrane vesicles (PMVs) derived from cultured mammalian cells as cell surface models in biophysical experiments. Further, we examine the relationship between affinity for PMVs and uptake into live cells using the CPP penetratin and two analogs enriched in arginines and lysines respectively. We show, using centrifugation to sediment PMVs, that the amount of peptide in the pellet fraction correlates linearly with the degree of cell internalization and that the relative efficiency of all-arginine and all-lysine variants of penetratin can be ascribed to their respective cell surface affinities. Our data show differences between arginine- and lysine-rich variants of penetratin that has not been previously accounted for in studies using lipid vesicles. Our data also indicate greater differences in binding affinity to PMVs than to heparin, a commonly used cell surface proteoglycan mimic. Taken together, this suggests that the cell surface interactions of CPPs are dependent on several cell surface moieties and their molecular organization on the plasma membrane.  相似文献   

5.
Ziegler A  Seelig J 《Biochemistry》2011,50(21):4650-4664
Many cell-penetrating peptides (CPPs) bind to glycosaminoglycans (GAG) located on the extracellular side of biological tissues. CPP binding to the cell surface is intimately associated with clustering of surface molecules and is usually followed by uptake into the cell interior. We have investigated the uptake mechanism by comparing CPPs which bind, but cannot induce, GAG clustering with those which do induce GAG clustering. We have synthesized the tryptophan-labeled CPP nona-l-arginine (WR(9)) and its monodispersely PEGylated derivate (PEG(27)-WR(9)) and have compared them with respect to glycan binding, glycan clustering, and their uptake into living cells. Both CPPs bind to the GAG heparin with high affinity (K(D) ~ 100 nM), but the PEGylation prevents the GAG clustering. Thus, it is possible to uncouple and analyze the contributions of GAG binding and GAG clustering to the biological CPP uptake. The uptake of PEG-WR(9) into CH-K1 cells is confined to intracellular vesicles, where colocalization with transferrin attests to an endocytic uptake. Transfection experiments with plasmid DNA for GFP revealed poor GFP expression, suggesting that endocytic uptake of PEG-WR(9) is compromised by insufficient release from endocytic vesicles. In contrast, WR(9) shows two uptake routes. At low concentration (<5 μM), WR(9) uptake occurs mainly through endocytosis. At higher concentration, WR(9) uptake is greatly enhanced, showing a diffuse spreading over the entire cytoplasm and nucleus-a phenomenon termed "transduction". Transduction of WR(9) leads to a higher GFP expression as compared to PEG-WR(9) endocytosis but also damages the plasma membrane as evidenced by SYTOX Green staining. The results suggest that GAG binding without and with GAG clustering induce two different pathways of CPP uptake.  相似文献   

6.
Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62.  相似文献   

7.
Glycosylated cell penetrating peptides (CPPs) have been conjugated to a peptide cargo and the efficiency of cargo delivery into wild type Chinese hamster ovary (CHO) and proteoglycan deficient CHO cells has been quantified by MALDI-TOF mass spectrometry and compared to tryptophan- or alanine containing CPPs. In parallel, the behavior of these CPPs in contact with model membranes has been characterized by different biophysical techniques: Differential Scanning and Isothermal Titration Calorimetries, Imaging Ellipsometry and Attenuated Total Reflectance IR spectroscopy. With these CPPs we have demonstrated that tryptophan residues play a key role in the insertion of a CPP and its conjugate into the membrane: galactosyl residues hampered the internalization when introduced in the middle of the amphipathic secondary structure of a CPP but not when added to the N-terminus, as long as the tryptophan residues were still present in the sequence. The insertion of these CPPs into membrane models was enthalpy driven and was related to the number of tryptophans in the sequence of these secondary amphipathic CPPs. Additionally, we have observed a certain propensity of the investigated CPP analogs to aggregate in contact with the lipid surface.  相似文献   

8.
细胞穿膜肽(Cell-penetrating peptides,CPPs)是一类能够穿过细胞膜或组织屏障的短肽。CPPs可通过内吞和直接穿透等机制运载蛋白质、RNA、DNA等生物大分子进入细胞内发挥其效应功能。相比于其他非天然的化学分子,CPPs具有生物相容性佳、对细胞造成的毒性小、完成入胞转运后可降解、并能与生物活性蛋白直接融合重组表达等优点,因此成为以胞内分子为靶标的药物递送技术发展的重要工具,并在生物医学研究领域具有良好的应用前景。文中针对CPPs的分类特点、入胞转运机制及其治疗应用的新近研究进展进行综述和讨论。  相似文献   

9.
Cell penetrating peptides (CPPs) have been postulated to carry macromolecules across cell plasma membranes without the need of receptors, transporters, endocytosis or any energy-consuming mechanism.We developed an assay to study lipid bilayer permeation of CPPs. HIV-1 TAT peptides were conjugated to N-(4-carboxy-3-hydroxyphenyl)maleimide (SAM) and incubated with Tb3+-containing liposomes. Upon chelation of Tb3+ by an aromatic carboxylic acid, the fluorescence of Tb3+ increases many fold. The CPP TAT(44-57)-SAM and TAT(37-53)-SAM, as a negative control, were unable to enter liposomes consisting of phosphatidylcholine (PC) or a mix of PC, negatively charged lipids and cholesterol.In parallel, cell entry of fluorescein-labeled TAT peptides was studied using confocal laser scanning microscopy (CLSM). TAT(44-57)-fluorescein did not enter Madin Darby canine kidney (MDCK) cells with intact plasma membranes but accumulated at their basal side. Only cells with impaired plasma membranes, as identified by nuclear staining with ethidium homodimer-1 (EthD-1), showed accumulation of TAT(44-57).Our findings change the perspectives of the potential use of TAT peptides as carriers for intracellular targeting. SAM- and fluorescein-labeled TAT(44-57) cannot penetrate lipid bilayers and intact plasma membranes of MDCK cells, respectively.  相似文献   

10.
Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides that can be used to deliver a variety of cargos into cells. However, it is still debated which routes CPPs employ to gain access to intracellular compartments. To assess this, most previously conducted studies have relied on information which is gained by using fluorescently labeled CPPs. More relevant information whether the internalized conjugates are biologically available has been gathered using end-point assays with biological readouts. Uptake kinetic studies have shed even more light on the matter because the arbitrary choice of end-point might have profound effect how the results could be interpreted. To elucidate uptake mechanisms of CPPs, here we have used a bioluminescence based assay to measure cytosolic delivery kinetics of luciferin-CPP conjugates in the presence of endocytosis inhibitors. The results suggest that these conjugates are delivered into cytosol mainly via macropinocytosis; clathrin-mediated endocytosis and caveolae/lipid raft dependent endocytosis are involved in a smaller extent. Furthermore, we demonstrate how the involved endocytic routes and internalization kinetic profiles can depend on conjugate concentration in case of certain peptides, but not in case of others. The employed internalization route, however, likely dictates the intracellular fate and subsequent trafficking of internalized ligands, therefore emphasizing the importance of our novel findings for delivery vector development.  相似文献   

11.
Cell-penetrating peptides (CPPs) have been developed as drug, protein, and gene delivery tools. In the present study, arginine (Arg)-rich CPPs containing unnatural amino acids were designed to deliver plasmid DNA (pDNA). The transfection ability of one of the Arg-rich CPPs examined here was more effective than that of the Arg nonapeptide, which is the most frequently used CPP. The transfection efficiencies of Arg-rich CPPs increased with longer post-incubation times and were significantly higher at 48-h and 72-h post-incubation than that of the commercially available transfection reagent TurboFect. These Arg-rich CPPs were complexed with pDNA for a long time in cells and effectively escaped from the late endosomes/lysosomes into the cytoplasm. These results will be helpful for designing novel CPPs for pDNA delivery.  相似文献   

12.
Successful and effective cellular delivery remains a main obstacles in the medical field. The use of cell‐penetrating peptides (CPPs) has become one of the most important tools for the internalisation of a wide range of molecules including pharmaceuticals. It is still difficult to choose one CPP for one biological application because there is no ubiquitous CPP meeting the diverse requirements. In our case, we are looking for a suitable CPP to deliver the pro‐apoptotic KLA peptide (KLAKLAKKLAKLAK) by a simple co‐incubation strategy. For that reason, we selected three different cell lines (fibroblastic, cancerous and macrophagic cells) and studied the uptake and subcellular localisation of six different CPPs alone as well as mixed with the KLA peptide. Furthermore, we used the CPPs with a carboxyamidated or a carboxylated C‐terminus and analysed the impact of the C‐termini on internalisation and cargo delivery. We could clearly showed that the cellular CPP uptake is not only dependent on the used CPP and cell line but also highly affected by its chemical nature of the C‐terminus (uptake: carboxyamidated CPPs > carboxylated CPPs) and can influence its cellular localisation. We successfully delivered the KLA peptide in the three cell lines and learned that here as well, the C‐terminus is crucial for an effective peptide delivery. Finally, we induced apoptosis in mouse leukaemic monocyte macrophage (RAW 264.7) and in human breast adenocarcinoma (MCF‐7) cells using the mixture of amidated MPG peptide : KLA and in african green monkey kidney fibroblast (Cos‐7) cells using carboxylated integrin peptide : KLA. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Cell-penetrating peptides (CPPs) have shown great potency for cargo delivery both in vitro and in vivo. Different biologically relevant molecules need to be delivered into appropriate cellular compartments in order to be active, for instance certain drugs/molecules, e.g. antisense oligonucleotides, peptides, and cytotoxic agents require delivery into the cytoplasm. Assessing uptake mechanisms of CPPs can help to develop novel and more potent cellular delivery vectors, especially in cases when reaching a specific intracellular target requires involvement of a specific internalization pathway. Here we measure the overall uptake kinetics, with emphasis on cytoplasmic delivery, of three cell-penetrating peptides M918, TP10 and pVec using a quenched fluorescence assay. We show that both the uptake levels and kinetic constants depend on the endocytosis inhibitors used in the experiments. In addition, in some cases only the internalization rate is affected by the endocytosis inhibitors while the total uptake level is not and vice versa, which emphasizes importance of kinetic studies when assessing the uptake mechanisms of CPPs. Also, there seems to be a correlation between lower total cellular uptake and higher first-order rate constants. Furthermore, this may indicate simultaneous involvement of different endocytic pathways with different efficacies in the internalization process, as hypothesized but not shown earlier in an uptake kinetics assay.  相似文献   

14.
在当前药物研发中,蛋白/多肽类药物占据着重要地位。然而,此类药物大多需进入细胞内才能发挥作用,故细胞摄取率低的问 题成为制约其发展的关键因素。细胞穿膜肽是一类富含精氨酸的短肽,自身具有较强的生物膜穿透能力,可携带多种大分子甚至是纳米 粒入胞。因此,穿膜肽被广泛应用于药物输送,且基于穿膜肽介导药物胞内输送,成为解决蛋白/多肽类药物入胞问题的优选策略。主 要综述穿膜肽介导蛋白/多肽类药物输送用于不同疾病治疗的研究进展。  相似文献   

15.
The identification of cell-penetrating peptides (CPPs) as vectors for the intracellular delivery of conjugated molecules such as peptides, proteins, and oligonucleotides has emerged as a significant tool to modulate biological activities inside cells. The mechanism of CPP uptake by the cells is still unclear, and appears to be both endocytotic and non-endocytotic, depending on the CPP and cell type. Moreover, it is also unknown whether cargo sequences have an effect on the uptake and cellular distribution properties of CPP sequences. Here, we combine results from quantitative fluorescence microscopy and binding to lipid membrane models to determine the effect of cargo peptide molecules on the cellular uptake and distribution of the arginine-rich CPPs, R7, and R7W, in live cells. Image analysis algorithms that quantify fluorescence were used to measure the relative amount of peptide taken up by the cell, as well as the extent to which the uptake was endocytotic in nature. The results presented here indicate that fusion of arginine-rich CPPs to peptide sequences reduces the efficiency of uptake, and dramatically changes the cellular distribution of the CPP from a diffuse pattern to one in which the peptides are mostly retained in endosomal compartments.  相似文献   

16.
Although cell-penetrating peptides (CPP) facilitate endocytic uptake of proteins, little is known regarding the extent to which CPPs facilitate protein cargo exit from endocytic vesicles for targeting to other intracellular sites. Since the plasma membrane and less so intracellular membranes contain cholesterol, the fluorescent sterol analogues dansyl-cholestanol (DChol) and dehydroergosterol (DHE) were used to monitor the uptake and intracellular distribution of fluorescent-tagged acyl coenzyme A binding protein (ACBP) into COS-7 cells and rat hepatoma cells. Confocal microscopy colocalized DChol and Texas Red-ACBP (TR-ACBP) with markers for the major endocytosis pathways, especially fluorescent-labeled cholera toxin (marker of ganglioside GM1 in plasma membrane lipid rafts) and dextran (macropinocytosis marker), but less so with transferrin (clathrin-mediated endocytosis marker). These findings were confirmed by multiphoton laser scanning microscopy colocalization of TR-ACBP with DHE (naturally-fluorescent sterol) and by double immunofluorescence labeling of native endogenous ACBP. Serum greatly and Pep-1 further 2.4-fold facilitated uptake of TR-ACBP, but neither altered the relative proportion of TR-ACBP colocalized with membranes/organelles (nearly 80%) vs cytoplasm and/or nucleoplasm (20%). Interestingly, Pep-1 selectively increased TR-ACBP associated with mitochondria while concomitantly decreasing that in endoplasmic reticulum. In summary, fluorescent sterols (DChol, DHE) were useful markers for comparing the distributions of both transported and endogenous proteins. Pep-1 modestly enhanced the translocation and altered the intracellular targeting of exogenous-delivered (TR-ACBP) in living cells.  相似文献   

17.
18.
Cell penetrating peptides (CPP) have been widely used to increase the cellular delivery of their associated cargo. Multiple modes of uptake have been identified; however, they cannot be predicted a priori. Elucidating these mechanisms is important for understanding peptide function as well as further optimizing cellular delivery. We have developed a class of mitogen activated protein kinase activated protein kinase 2 (MK2) inhibitor peptides, named FAK and YARA that utilize CPP domains to gain cellular access. In this study, we investigate the mechanism of endocytosis of these MK2 inhibitors by examining the uptake of fluorescently labeled peptide in human monocyte (THP‐1) and mesothelial cells, and looking for colocalization with known markers of endocytosis. Our results indicate that uptake of the MK2 inhibitors was minimally enhanced by the addition of the fluorescent label, and that the type of endocytosis used by the inhibitor depends on several factors including concentration, cell type, and which CPP was used. We found that in THP‐1 cells, the uptake of YARA occurred primarily via macropinocytosis, whereas FAK entered via all three mechanisms of endocytosis examined in this study. In mesothelial cells, uptake of YARA occurred via caveolae‐mediated endocytosis, but became less specific at higher concentrations; whereas uptake of FAK occurred through clathrin‐mediated endocytosis. In all cases, the delivery resulted in active inhibition of MK2. In summary, the results support endocytic uptake of fluorescently labeled FAK and YARA in two different cell lines, with the mechanism of uptake dependent on extracellular concentration, cell type, and choice of CPP. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The identification of cell-penetrating peptides (CPPs) as vectors for the intracellular delivery of conjugated molecules such as peptides, proteins, and oligonucleotides has emerged as a significant tool to modulate biological activities inside cells. The mechanism of CPP uptake by the cells is still unclear, and appears to be both endocytotic and non-endocytotic, depending on the CPP and cell type. Moreover, it is also unknown whether cargo sequences have an effect on the uptake and cellular distribution properties of CPP sequences. Here, we combine results from quantitative fluorescence microscopy and binding to lipid membrane models to determine the effect of cargo peptide molecules on the cellular uptake and distribution of the arginine-rich CPPs, R7, and R7W, in live cells. Image analysis algorithms that quantify fluorescence were used to measure the relative amount of peptide taken up by the cell, as well as the extent to which the uptake was endocytotic in nature. The results presented here indicate that fusion of arginine-rich CPPs to peptide sequences reduces the efficiency of uptake, and dramatically changes the cellular distribution of the CPP from a diffuse pattern to one in which the peptides are mostly retained in endosomal compartments.  相似文献   

20.
The in vivo application potential of viral-based gene delivery approaches is hindered by a risk of insertional oncogenesis. Of the many delivery methods, cell-penetrating peptides (CPP)-based delivery has good biocompatibility and biodegradability. However, low efficiency is still the disadvantage of CPPs-based nucleic acid transfection, and delivery efficiency may vary from different CPPs. Here, we describe Scp01-b, as a new CPP, which can enter cultured cell lines and primary cultured cells examined by fluorescence microscopy and quantitative assay, the internalization process is a concentration, temperature, and incubation time-dependent manner. Scp01-b does not insert into the membrane directly and its uptake is mediated through endocytosis pathway. Moreover, Scp01-b could mediate the uptake of plasmid DNA into the Caski and HSC-T6 cells, and we noted that Scp01-b-mediated transfection efficiency was nearly the same with traditional liposome (TurboFectin)-mediated transfection. These findings suggest that Scp01-b can act as a useful tool for non-viral-based delivery in further application such as reprogramming and gene editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号