首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of oligonucleotides condensed into long concatemeric complexes with cancer cells was investigated. Pairs of 24- and 25-mer oligodeoxyribonucleotides were designed so that they could hybridize and form concatemeric structures. Pre-assembling of the oligonucleotides into concatemers considerably enhanced their ability to bind to human embryo kidney 293 cells and neuroblastoma IMR-32 cells as compared to free oligonucleotides. Efficiency of concatemers binding to the cells is improved with increase of the length and concentration of concatemeric complexes. The obtained results suggest incorporation of pharmacologically active oligonucleotides into concatemeric complexes as an approach to improvement of their cellular interaction.  相似文献   

2.
Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.  相似文献   

3.
Recombination-dependent concatemeric plasmid replication.   总被引:10,自引:0,他引:10       下载免费PDF全文
The replication of covalently closed circular supercoiled (form I) DNA in prokaryotes is generally controlled at the initiation level by a rate-limiting effector. Once initiated, replication proceeds via one of two possible modes (theta or sigma replication) which do not rely on functions involved in DNA repair and general recombination. Recently, a novel plasmid replication mode, leading to the accumulation of linear multigenome-length plasmid concatemers in both gram-positive and gram-negative bacteria, has been described. Unlike form I DNA replication, an intermediate recombination step is most probably involved in the initiation of concatemeric plasmid DNA replication. On the basis of structural and functional studies, we infer that recombination-dependent plasmid replication shares important features with phage late replication modes and, in several aspects, parallels the synthesis of plasmid concatemers in phage-infected cells. The characterization of the concatemeric plasmid replication mode has allowed new insights into the mechanisms of DNA replication and recombination in prokaryotes.  相似文献   

4.
Replication and packaging of choleraphage phi 149 DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
R Chowdhury  A Ray  P Ray    J Das 《Journal of virology》1987,61(12):3999-4006
The intercellular replication of the circularly permuted DNA of choleraphage phi 149 involves a concatemeric DNA structure with a size equivalent to six genome lengths. The synthesis of both monomeric and concatemeric DNAs during replication of phi 149 occurred in the cytoplasm. The concatemers served as the substrate for the synthesis of mature phage DNA, which was eventually packaged by a headful mechanism starting from a unique pac site in the concatemeric DNA. Packaging of DNA into phage heads involved binding of concatemeric DNA to the cell membrane. A scheme involving sequential packaging of five headfuls proceeding in the counterclockwise direction from the pac site is proposed. After infection under high-phosphate conditions, the concatemeric DNA intermediates were not formed, although synthesis of monomeric molecules was unaffected.  相似文献   

5.
Herpes simplex virus-infected cells contain large concatemeric DNA molecules arising from replication of the viral genome. The large concatemers are cleaved to generate unit-length molecules terminating at both ends with the a sequence. We have used constructed defective virus vectors (amplicons) derived from herpes simplex virus to study the mechanism of cleavage of viral DNA concatemers and the packaging of viral DNA into nucleocapsids. These studies revealed that (i) a 248-base-pair a sequence contained the signal(s) required for cleavage-packaging, (ii) the cleavage of viral DNA concatemers was coupled to packaging, (iii) the a sequence contained the information required for its own amplification, and (iv) cleavage-packaging occurred by a novel process involving the amplification of the a sequence.  相似文献   

6.
To determine the replicative mechanism for human cytomegalovirus (HCMV) DNA, field inversion gel electrophoresis was used to separate HCMV replicative DNAs during lytic infection. Unit-length circular HCMV genomes lacking terminal restriction fragments were detected starting 4 h after infection even when cells were treated with aphidicolin, phosphonoacetic acid, or cycloheximide. Viral DNA synthesis began 24 h after infection and produced large amounts of high-molecular-weight replicative DNA that was a precursor of progeny genomes. Replicative DNA contained rare terminal restriction fragments, and long-arm termini were much less frequent than short-arm termini. Replicative DNA was not composed of unit-length circles because low-dose gamma irradiation of replicative DNA generated numerous random high-molecular-weight fragments rather than unit-length molecules. PacI digestion of replicative DNA from a recombinant HCMV with two closely spaced PacI sites revealed that replicative DNA is concatemeric and genome segment inversion occurs after concatemer synthesis. These results show that after circularization of the parental genome, DNA synthesis produces concatemers and genomic inversion occurs within concatemeric DNA. The results further suggest that concatemers acquire genomic termini during the cleavage/packaging process which preferentially inserts short-arm termini into empty capsids, causing a predominance of short-arm termini on the concatemer.  相似文献   

7.
The multiplication of bacteriophage T7 is blocked in Escherichia coli M. The genetic determinant of this ability (groM) to inhibit T7 growth was transferred to an E. coli K-12 recipient by means of conjugation. We determined at which precise step T7 maturation is blocked. Phage-directed protein and DNA synthesis as well as degradation of host DNA were not qualitatively affected. Instead of infective phages, only preheads were produced. These, however, were maturable in vitro. The newly synthesized phage DNA accumulated in a concatemeric form and matured from its tetrameric or longer forms (very fast sedimenting DNA) only into its dimeric form (fast-sedimenting DNA) or longer forms. The following step, i.e., the maturation of the dimeric to unit-length DNA, was not observed. Since the concatemeric form of T7 DNA accumulated in spite of the presence of maturable preheads, it is likely that the maturation process was blocked at the level of DNA packaging. As intermediates in the packaging process, we found some prehead-DNA complexes. We interpreted these as true assembly intermediates (or breakdown products thereof), since the attached DNA was still in its concatemeric form. This shows that the very first DNA packaging step, the binding of the progeny DNA to the preheads, was obviously not blocked. Rather, a later step, such as the filling of the preheads with T7 DNA or the stabilization of completely packaged particles (i.e., the final cutting of the concatemers into unit-size length), was inhibited.  相似文献   

8.
M Merchlinsky  B Moss 《Cell》1986,45(6):879-884
The junctions, separating unit-length genomes in intracellular concatemeric forms of vaccinia virus DNA, are duplex copies of the hairpin loops that form the ends of mature DNA molecules present in infectious virus particles. Circular E. coli plasmids with palindromic junction fragments were replicated in vaccinia virus-infected cells and resolved into linear minichromosomes with vector DNA in the center and vaccinia virus DNA hairpins at the two ends. Resolution did not occur when the concatemer joint was less than 250 bp or when plasmids were transfected into uninfected cells, indicating requirements for a specific DNA structure and viral trans-acting factors. These studies indicate that concatemers can serve as replicative intermediates and account for the generation of flip-flop sequence variation of the hairpins at the ends of the mature vaccinia virus genome.  相似文献   

9.
Vaccinia virus replicates in the cytoplasm of infected cells, generating transient replicative intermediates containing the DNA for the terminal sequences as concatemeric junctions. The processing of the terminal sequences for a series of vaccinia virus conditional lethal mutants at the nonpermissive temperature was analyzed by restriction enzyme digestion and Southern blot hybridization of DNA isolated from infected cells. Three phenotypes were observed: DNA replication negative (Rep-), DNA replication positive but concatemer resolution negative (Rep+ Res-), and DNA replication positive and concatemer resolution positive (Rep+ Res+). Interestingly, all six Rep+ Res- mutants from separate complementation groups were defective in late protein synthesis. Isatin beta-thiosemicarbazone, a drug that blocks late protein synthesis, also prevented resolution of concatemers. Orthogonal field gel electrophoresis of the DNA generated by the late defective mutants revealed a distribution of linear genome multimers. The multimers were processed into mature monomers after a shift to the permissive temperature in the presence of cytosine arabinoside for all the Rep+ Res- mutants except ts22, an irreversible mutant which cleaves RNA late in infection (R.F. Pacha and R.C. Condit, J. Virol. 56:395-403, 1985). Genome formation can be divided into two stages: DNA replication, which generates concatemers, and resolution, which processes concatemers into monomers with hairpin termini. Early viral genes are required for the former, and late viral genes are required for the latter.  相似文献   

10.
Herpesviruses have large double-stranded linear DNA genomes that are formed by site-specific cleavage from complex concatemeric intermediates. In this process, only one of the two genomic ends are formed on the concatemer. Although the mechanism underlying this asymmetry is not known, one explanation is that single genomes are cleaved off of concatemer ends in a preferred direction. This implies that cis elements control the direction of packaging. Two highly conserved cis elements named pac1 and pac2 lie near opposite ends of herpesvirus genomes and are important for cleavage and packaging. By comparison of published reports and by analysis of two additional herpesviruses, we found that pac2 elements lie near the ends formed on replicative concatemers of four herpesviruses: herpes simplex virus type 1, equine herpesvirus 1, guinea pig cytomegalovirus, and murine cytomegalovirus. Formation of pac2 ends on concatemers depended on terminal cis sequences, since ectopic cleavage sites engineered into the murine cytomegalovirus genome mediated formation of pac2 ends on concatemers regardless of the orientation of their insertion. These findings are consistent with a model in which pac2 elements at concatemer ends impart a directionality to concatemer packaging by binding proteins that initiate insertion of concatemer ends into empty capsids.  相似文献   

11.
We used pulsed-field gel electrophoresis, restriction fragment mapping, and fluorescence microscopy of individual DNA molecules to analyze the structure of chloroplast DNA (cpDNA) from shoots of ten to 14 day old maize seedlings. We find that most of the cpDNA is in linear and complex branched forms, with only 3-4% as circles. We find the ends of linear genomic monomers and head-to-tail (h-t) concatemers within inverted repeat sequences (IRs) near probable origins of replication, not at random sites as expected from broken circles. Our results predict two major and three minor populations of linear molecules, each with different ends and putative origins of replication. Our mapping data predict equimolar populations of h-t linear concatemeric molecules differing only in the relative orientation (inversion) of the single copy regions. We show how recombination during replication can produce h-t linear concatemers containing an inversion of single copy sequences that has for 20 years been attributed to recombinational flipping between IRs in a circular chromosome. We propose that replication is initiated predominantly on linear, not circular, DNA, producing multi-genomic branched chromosomes and that most replication involves strand invasion of internal regions by the ends of linear molecules, rather than the generally accepted D-loop-to-theta mechanism. We speculate that if the minor amount of cpDNA in circular form is useful to the plant, its contribution to chloroplast function does not depend on the circularity of these cpDNA molecules.  相似文献   

12.
Twin-arginine translocation (Tat) systems allow the translocation of folded proteins across biological membranes of most prokaryotes. In proteobacteria, a TatBC complex binds Tat substrates and initiates their translocation after recruitment of the component TatA. TatA and TatB belong to one protein family, but only TatB forms stable complexes with TatC. Here we show that TatB builds up TatA-like modular complexes in the absence of TatC. This TatB ladder ranges from about 100 to over 880 kDa with 105+/-10 kDa increments. TatC alone can form a 250 kDa complex which could be a scaffold that can recruit TatB to form defined TatBC complexes.  相似文献   

13.
The replication of vaccinia virus proceeds through concatemeric intermediates which are resolved into unit-length DNA. In vaccinia virus-infected cells, plasmids containing the vaccinia virus DNA junction fragment that connects concatemers are resolved into linear minichromosomes of vector DNA flanked by hairpin loops. Resolution requires two copies of a specific nucleotide sequence conserved among poxviruses and found proximal to the hairpin loop. This study demonstrates that orientation of each sequence with respect to the other as well as to the axis of symmetry is critical for resolution, the processing of plasmids containing heterologous pairs of resolution sites is influenced by mismatched nucleotides between the sites, and the vaccinia virus hairpin in the linear minichromosome is a heteroduplex composed of DNA from each strand of the concatemer junction. A model incorporating site-specific recombination and orientated branch migration is proposed to account for resolution of the vaccinia virus concatemer junction.  相似文献   

14.
Processing of concatemers of bacteriophage T7 DNA in vitro   总被引:3,自引:0,他引:3  
The T7 chromosome is a double-stranded linear DNA molecule flanked by direct terminal repeats or so-called terminal redundancies. Late in infection bacteriophage T7 DNA accumulates in the form of concatemers, molecules that are comprised of T7 chromosomes joined in a head to tail arrangement through shared terminal redundancies. To elucidate the molecular mechanisms of concatemer processing, we have developed extracts that process concatemeric DNA. The in vitro system consists of an extract of phage T7-infected cells that provides all T7 gene products and minimal levels of endogenous concatemeric DNA. Processing is analyzed using a linear 32P-labeled substrate containing the concatemeric joint. T7 gene products required for in vitro processing can be divided into two groups; one group is essential for concatemer processing, and the other is required for the production of full length left-hand ends. The products of genes 8 (prohead protein), 9 (scaffolding protein), and 19 (DNA maturation) along with gene 18 protein are essential, indicating that capsids are required for processing. In extracts lacking one or more of the products of genes 2 (Escherichia coli RNA polymerase inhibitor), 5 (DNA polymerase), and 6 (exonuclease), full length right-hand ends are produced. However, the left-hand ends produced are truncated, lacking at least 160 base pairs, the length of the terminal redundancy. Gene 3 endonuclease, required for concatemer processing in vivo, is not required in this system. Both the full length left- and right-hand ends produced by the processing reaction are protected from DNase I digestion, suggesting that processing of the concatemeric joint substrate is accompanied by packaging.  相似文献   

15.
P Serwer  R H Watson    S J Hayes 《Journal of virology》1987,61(11):3499-3509
By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily at the left end of mature DNA subunits within the 100S+ DNA.  相似文献   

16.
The linear virion Epstein-Barr virus (EBV) DNA is terminated at both ends by a variable number of direct, tandemly arranged terminal repeats (TRs) which are approximately 500 bp in size The number of TRs at each terminus can vary. After infection of host cells, the EBV DNA circularizes via the TRs by an unknown mechanism, and replication of the viral DNA during the lytic phase of the EBV life cycle leads to large DNA concatemers which need to be cleaved into virion DNA units, eventually. This cleavage event occurs at an unknown locus within the TRs of EBV, which are the cis-acting elements essential for cleavage of the concatemers and encapsidation of the virion DNA. To investigate the mechanism of DNA processing during genome circularization and cleavage of concatemeric DNA, the genomic termini of EBV were cloned, sequenced, and analyzed by direct labeling of the virion DNA. Both termini ended with identical 11-bp elements; the right end has acquired an additional 9-bp stretch that seemed to originate from the leftmost unique sequences. The left terminus is blunt, whereas the right terminus appears to have a 3' single-base extension. In a transient packaging assay, a single terminal repeat was found to be sufficient for encapsidation of plasmid DNA, and mutagenesis of the TR element defined a region of 159 bp, including the 11-bp element, which is essential for packaging. These results indicate that the genomic termini of EBV are not generated by a simple cut of a hypothetical terminase. The mechanism for cleavage of concatemers seems to involve recombination events.  相似文献   

17.
During replication of their linear, single-stranded DNA genomes, parvoviruses generate a series of concatemeric duplex intermediates. We have cloned, into Escherichia coli plasmids, junction fragments from these palindromic concatemers of minute virus of mice DNA spanning both the right end-to-right end (viral 5' to 5') and left end-to-left end (viral 3' to 3') fusions. When mouse cells were transfected with these circular plasmids and superinfected with minute virus of mice, the viral junctions were resolved and the plasmids replicated as linear chromosomes with vector DNA in their centers and viral DNA at their termini. Resolution did not occur when the concatemer joint was replaced by a different palindromic sequence or when the transfected cells were not superinfected, indicating the presence of latent origins of replication which could only be activated by a viral trans-acting factor(s). Moreover, the products of resolution and replication from the two termini were characteristically different. Analysis of individual terminal fragments showed that viral 5' (right-end) sequences were resolved predominantly into "extended" structures with covalently associated copies of the virally encoded NS-1 polypeptide, while bridges derived from the 3' (left) end resolved into both NS-1-associated extended termini and lower-molecular-weight "turn-around" forms in which the two DNA strands were covalently continuous. This pattern of resolution exactly coincides with that seen at the two termini of replicative-form intermediates in normal virus infections. These results demonstrate that the bridge structures are authentic substrates for resolution and indicate that the frequency with which extended versus turn-around forms of each terminus are generated is an intrinsic property of the telomere.  相似文献   

18.
19.
Assembly of the cytochrome bo3 complex   总被引:1,自引:0,他引:1  
An understanding of the mechanisms that govern the assembly of macromolecular protein complexes is fundamental for studying their function and regulation. With this in mind, we have determined the assembly pathway for the membrane-embedded cytochrome bo(3) of Escherichia coli. We show that there is a preferred order of assembly, where subunits III and IV assemble first, followed by subunit I and finally subunit II. We also show that cofactor insertion catalyses assembly. These findings provide novel insights into the biogenesis of this model membrane protein complex.  相似文献   

20.
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号