首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detergent solubilization and purification of the E. coli heavy metal P-type ATPase ZntA yields an enzyme with reduced hydrolytic activity in vitro. Here, it is shown that the in vitro hydrolytic activity of detergent solubilized ZntA is increased in the presence of negatively charged phospholipids and at slightly acidic pH. The protein-lipid interaction of ZntA was characterized by enzyme-coupled ATPase assays and fluorescence spectroscopy. Among the most abundant naturally occurring phospholipids, only phosphatidyl-glycerol lipids (PG) enhance the in vitro enzymatic ATPase activity of ZntA. Re-lipidation of detergent purified ZntA with 1,2-dioleoylphosphatidyl-glycerol (DOPG) increases the ATPase activity four-fold compared to the purified state. All other E. coli phospholipids fail to activate the ATPase. Among the phosphatidyl-glycerol family, highest activity was observed for 1,2-dioleoyl-PG followed by 1,2-dimyristoyl-PG, 1,2-dipalmitoyl-PG and 1,2-distearoyl-PG. Increasing intrinsic Trp fluorescence quantum yield upon relipidation of ZntA was used to determine a pH maximum for lipid binding at pH 6.7. The pH dependence of the lipid binding was confirmed by pH-dependent ATPase assays showing maximum activity at pH 6.7. The biophysical characterization of detergent solubilized membrane proteins crucially relies on the conformational stability and functional integrity of the protein under investigation. The present study describes how the E. coli ZntA P-type ATPase can be stabilized and functionally activated in a detergent solubilized system.  相似文献   

2.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

4.
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to approximately 95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent K(m) of 878 microm and a V(max) of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mm Mg(2+). Preincubation of MsbA-containing liposomes with 3-deoxy-d-mannooctulosonic acid (Kdo)(2)-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 microm Kdo(2)-lipid A. Addition of Kdo(2)-lipid A increased the V(max) to 154 nmol/min/mg and decreased the K(m) to 379 microm. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IV(A). MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30 degrees C but was significantly reduced at 42 degrees C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator.  相似文献   

5.
ZntA, a soft metal-translocating P1-type ATPase from Escherichia coli, confers resistance to Pb(II), Cd(II), and Zn(II). ZntA was expressed as a histidyl-tagged protein, solubilized from membranes with Triton X-100, and purified to homogeneity. The soft metal-dependent ATP hydrolysis activity of purified ZntA was characterized. The activity was specific for Pb(II), Cd(II), Zn(II), and Hg(II), with the highest activity obtained when the metals were present as thiolate complexes of cysteine or glutathione. The maximal ATPase activity of ZntA was approximately 3 micromol/(mg x min) obtained with the Pb(II)-thiolate complex. In the absence of thiolates, Cd(II) inhibits ZntA above pH 6, whereas the Cd(II)-thiolate complexes stimulate activity, suggesting that a metal-thiolate complex is the true substrate in vivo. These results are consistent with the physiological role of ZntA as mediator of resistance to toxic concentrations of the divalent soft metals, Pb(II), Cd(II), and Zn(II), by ATP-dependent efflux. Our results confirm that ZntA is the first Pb(II)-dependent ATPase discovered to date.  相似文献   

6.
Kasamo K 《Plant physiology》1986,80(4):818-824
The plasma membrane ATPase of mung bean (Phaseolus mungo L.) roots has been solubilized with a two-step procedure using the anionic detergent, deoxycholate (DOC) and the zwitterionic detergent, zwittergent 3-14 as follows: (a) loosely bound membrane proteins are removed by treatment with 0.1% DOC; (b) The ATPase is solubilized with 0.1% zwittergent in the presence of 1% DOC; (c) the solubilized material is further purified by centrifugation through a glycerol gradient (45-70%). Typically, about 10% of the ATPase activity is recovered, and the specific activity increases about 11-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the peak fraction from the glycerol gradient contains three major polypeptides of Mr = 105,000, 67,000, and 57,000 daltons. The properties of the purified ATPase are essentially the same as those of membrane-bound ATPase, with respect to pH optimum, substrate specificity, inhibitor sensitivity, and ion stimulation.  相似文献   

7.
Ethanolaminephosphotransferase (CDPethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase, EC 2.7.8.1) has been purified in active form from rat brain microsomes by a two-step chromatographic procedure. Enzyme preparations characterized by high specific activity and stability were obtained supplementing the solubilization and elution buffers, containing 1% Triton X-100, with 0.01% 2,6-di-tert-butyl-4-methylphenol. The specific activity of the purified enzyme was about 1200-times higher than that of the crude solubilized enzyme. The lipid dependence of ethanolaminephosphotransferase was studied both in the presence of Triton X-100 and in detergent-free enzyme preparations. The activity of the detergent-solubilized ethanolaminephosphotransferase was strongly modified by phospholipids. The kinetic behaviour of the enzyme was also dependent on the lipids contained in the aggregates obtained by removal of the detergent from detergent/lipid/protein suspensions. A regulatory role of phospholipids on the activity of the membrane-bound ethanolaminephosphotransferase is discussed.  相似文献   

8.
In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport.  相似文献   

9.
A phospholipid-stimulated adenosine triphosphatase (ATPase) complex was solubilized and partially purified from membrane particles of Escherichia coli ML308-225. The complex was of large molecular size and contained 16 polypeptides, five of which were subunits of the F1-type ATPase of E. coli. Components of the respiratory chain were absent. Enzyme activity was stimulated by lysophosphatidylcholine, phosphatidylcholine, phosphatidylglycerol, and cardiolipin but not by phosphatidylethanolamine. The ATPase activity of the complex was inhibited by N,N′-dicyclohexylcarbodiimide and by Dio-9 at lower inhibitor:protein ratios than required for inhibition of the F1-type ATPase of E. coli. However, the ATPase complex was less sensitive than the membrane-bound enzyme to inhibition by these compounds.  相似文献   

10.
Clathrin-coated vesicles contain a proton translocating ATPase which is insensitive to azide but inhibited by N-ethylmaleimide. The ATP hydrolytic subunit of this proton pump has been solubilized, partially purified, and reconstituted into H+-ATPase-depleted coated vesicle membranes (Xie, X.-S., Stone, D.K., and Racker, E. (1984) J. Biol. Chem. 259, 11676-11678). In this communication we report that the entire proton transporting complex has been solubilized and purified 200-fold. The complex, when reconstituted into brain lipid liposomes, catalyzes azide-resistant, N-ethylmaleimide-sensitive H+ transport manifested as both generation of a pH gradient and an electrical gradient. The complex has an apparent molecular mass of 530 kDa.  相似文献   

11.
The three major subunits (α, β and γ) of the coupling factor, F1 ATPase, of Escherichia coli were separated and purified by hydrophobic column chromatography after the enzyme was dissociated by cold inactivation. The ability to hydrolyze ATP was reconstituted by dialyzing the mixture of subunits against 0.05 M Tris-succinate, pH 6.0, containing 2 mM ATP and 2 mM MgCl2. A mixture containing α, β and γ regained ATP hydrolyzing activity. Individual subunits alone or mixtures of any two subunits did not develop ATPase activity, except for a low but significant activity with α plus β. The reconstituted ATPase had a Km of 0.23 mM for ATP and a molecular weight by sucrose gradient density centrifugation of about 280,000.  相似文献   

12.
The activity of phosphatidylserine (PS) synthase (CDP-1,2-diacyl-sn-glycerol: l-serine O-phosphatidyltransferase, EC 2.7.8.8) from Escherichia coli was studied after reconstitution with lipid vesicles of various compositions. PS synthase exhibited practically no activity in the absence of a detergent and with the substrate CDP-diacylglycerol (CDP-DAG) present only in the lipid vesicles. Inclusion of octylglucoside (OG) in the assay mixture increased the activity 20- to 1000-fold, the degree of activation depending on the lipid composition of the vesicles. Inclusion of additional CDP-DAG in the assay mixture increased the activity 5- to 25-fold. When the fraction of phosphatidylglycerol (PG) was increased from 15 to 100 mol% in the vesicles the activity increased 10-fold using the assay mixture containing OG. The highest activities were exhibited with the anionic lipids synthesized by E. coli, namely PG, diphosphatidylglycerol (DPG), and phosphatidic acid, while phosphatidylinositol gave a lower activity. Cryotransmission electron microscopy showed that transformation of the vesicles to micelles brings about an activation of the enzyme that is proportional to the degree of micellization. Thus, the activity of PS synthase is modulated by the lipid aggregate structure and by the fraction and type of anionic phospholipid in the aggregates. The increase in the activity caused by PG and DPG is physiologically relevant; it may be part of a regulatory mechanism that keeps the balance between phosphatidylethanolamine, and the sum of PG and DPG, nearly constant in wild-type E. coli cells.  相似文献   

13.
A glycoprotein ATPase in cholinergic synaptic vesicles of Torpedo electric organ was solubilized with octa-ethylene glycol dodecyl ether detergent. Study of potential stabilizing factors identified crude brain phosphatidylserine, glycerol, dithiothreitol, and protease inhibitors as of value in maintaining activity. The ATPase was purified from the solubilized, stabilized material by glycerol density gradient band sedimentation velocity ultracentrifugation, and hydroxylapatite, wheat germ lectin affinity, and size exclusion chromatographies. The pure ATPase had a specific activity of about 37 mumol ATP hydrolyzed/min/mg protein. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified material typically exhibited three polypeptides of molecular masses 110, 104, and 98 kilodaltons (kDa) and a fourth diffuse polypeptide of 60 kDa. This composition suggests that the ATPase is a member of the P-type, or phosphointermediate-forming, family, but it was shown to be distinct from the ouabain-sensitive Na+,K+- and CA2+-stimulated Mg2+-ATPases. The purified vesicle enzyme was rapidly phosphorylated by [gamma-32P]ATP on about 14% of the subunits with molecular weights of 98,000-110,000. About 16% of the ATPase was phosphorylated in whole-vesicle ghosts in a manner consistent with formation of a phosphointermediate, thus confirming the P-type nature of this enzyme.  相似文献   

14.
The catecholamine transporter from bovine chromaffin granules has been solubilized by using low concentrations of sodium cholate in the presence of phospholipids. The functional solubilized protein has been incorporated into liposomes after removal of the detergent either by gel filtration or by dialysis. Reserpine-sensitive accumulation against a concentration gradient is achieved by artifically imposing a pH gradient across the membrane. In the reconstituted system adenosine 5'-triphosphate (ATP) serves as an energy source only at higher detergent concentrations. The proton-translocating adenosine triphosphatase (ATPase) is solubilized in parallel with the increasing efficiency of ATP as an energy source. Several criteria are proposed to distinguish between carrier-mediated (reserpine sensitive) and unmediated transport in the reconstituted system. The reserpine-sensitive process shows affinity and ss presented in this communication provide further support for the contention that concentrative uptake in biogenic amine storage vesicles is driven by a transmembrane pH gradient, which, in the native system, is generated by a proton-translocating ATPase. Moreover, the assays described provide a tool for the isolation and purification of the transport protein.  相似文献   

15.
Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and biofilm-mediated multidrug resistance. It produces and secretes various toxins with hydrolytic activities including phospholipases. However, the function of intracellular phospholipases for bacterial virulence has still not been established. Here, we demonstrate that the hypothetical gene pa2927 of P. aeruginosa encodes a novel phospholipase B named PaPlaB. At reaction equilibrium, PaPlaB purified from detergent-solubilized membranes of E. coli released fatty acids (FAs) from sn-1 and sn-2 positions of phospholipids at the molar ratio of 51:49. PaPlaB in vitro hydrolyzed P. aeruginosa phospholipids reconstituted in detergent micelles and phospholipids reconstituted in vesicles. Cellular localization studies indicate that PaPlaB is a cell-bound PLA of P. aeruginosa and that it is peripherally bound to both membranes in E. coli, yet the active form was predominantly associated with the cytoplasmic membrane of E. coli. Decreasing the concentration of purified and detergent-stabilized PaPlaB leads to increased enzymatic activity, and at the same time triggers oligomer dissociation. We showed that the free FA profile, biofilm amount and architecture of the wild type and ΔplaB differ. However, it remains to be established how the PLB activity of PaPlaB is regulated by homooligomerisation and how it relates to the phenotype of the P. aeruginosa ΔplaB. This novel putative virulence factor contributes to our understanding of phospholipid degrading enzymes and might provide a target for new therapeutics against P. aeruginosa biofilms.  相似文献   

16.
We investigated the functional aspects of the interaction between the sarcoplasmic reticulum (SR) membranous Ca(2+)-ATPase and the non-ionic detergent dodecylmaltoside, using detergent concentrations allowing perturbation of the membrane but not its solubilization. At pH 7.5, the effects of dodecylmaltoside on ATPase activity and delipidation had previously been shown to resemble, in some respects, those of octa(ethylene glycol) monododecylether (C12E8), an appropriate detergent for ATPase studies. Our aim here was to explore the specific effects of dodecylmaltoside on the different steps in the ATPase catalytic cycle, which may owe their specificity to the difference between the polar head groups of dodecylmaltoside and C12E8. This was done at 20 degrees C, both at pH 6 in the absence of KCl and at pH 7.5 in the presence of 100 mM KCl, two conditions under which the characteristics of unperturbed ATPase have already been well defined. Preliminary estimation of dodecylmaltoside partition between water and SR membranes at pH 6 yielded a partition coefficient K close to 4 x 10(5) (ratio of the molar fraction of dodecylmaltoside in the lipid to that in the aqueous phase at a low detergent concentration, assuming that most of this detergent was present in the lipid phase). At near saturation of SR membranes, bound dodecylmaltoside was roughly equimolar with the constituent phospholipids. Non-solubilizing concentrations of dodecylmaltoside inhibited SR ATPase activity by up to 65-70% at pH 7.5, but not at pH 6, unlike the results of similar experiments with C12E8. The rates of the four main steps in the ATPase catalytic cycle were measured by fast kinetic techniques; they were similarly modified at both pH. Dodecylmaltoside slowed down both the rate of calcium-saturated ATPase phosphorylation and the rate of ATPase isomerization after phosphorylation, two steps which were not targets of perturbation by C12E8. The slowing down of the isomerization step by dodecylmaltoside might well explain why it inhibited overall ATPase activity at pH 7.5. In contrast to C12E8, dodecylmaltoside did not affect the dephosphorylation step, which was the main target of inhibition by C12E8 and the main rate-limiting step at pH 6. However, like C12E8, dodecylmaltoside accelerated the calcium binding-induced transition of nonphosphorylated ATPase. Another striking feature of the perturbation induced by dodecylmaltoside was that it significantly altered the binding of 45Ca2+ to the ATPase and the corresponding conformational changes. At pCa 5-5.5, it almost halved calcium binding to the ATPase but ATPase phosphorylation was unimpaired.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The pH dependence of the reaction of dicyclohexylcarbodiimide with the essential aspartyl-61 residue in subunit c of Escherichia coli ATP synthase was compared in membranes and in a detergent dispersed preparation of the enzyme. The rate of reaction was estimated by measuring the inactivation of ATPase activity. The reaction with the detergent dispersed form of the enzyme proved to be pH sensitive with the essential aspartyl group titrating with a pKa=8. However, when measured with E. coli membranes, the reaction proved to be pH insensitive. The results suggest that the reacting aspartyl-61 residues are shielded from the bulk aqueous solvent when in the membrane, but then become aqueous-accessible following detergent solubilization.  相似文献   

18.
Chionodracine (Cnd) is a 22-residue peptide of the piscidin family expressed in the gills of the Chionodraco hamatus as protection from bacterial infections. Here, we report the effects of synthetic Cnd on both Psychrobacter sp. TAD1 and Escherichia coli bacteria, as well as membrane models. We found that Cnd perforates the inner and outer membranes of Psychrobacter sp. TAD1, making discrete pores that cause the cellular content to leak out. Membrane disruption studies using intrinsic and extrinsic fluorescence spectroscopy revealed that Cnd behaves similarly to other piscidins, with comparable membrane partition coefficients. Membrane accessibility assays and structural studies using NMR in detergent micelles show that Cnd adopts a canonical topology of antimicrobial helical peptides, with the hydrophobic face toward the lipid environment and the hydrophilic face toward the bulk solvent. The analysis of Cnd free energy of binding to vesicles with different lipid contents indicates a preference for charged phospholipids and a more marked binding to native E. coli extracts. Taken with previous studies on piscidin-like peptides, we conclude that Cnd first adsorbs to the membrane, and then forms pores together with membrane fragmentation. Since Cnd has only marginal hemolytic activity, it constitutes a good template for developing new antimicrobial agents.  相似文献   

19.
J Okkeri  T Haltia 《Biochemistry》1999,38(42):14109-14116
Cation-transporting P-type ATPases comprise a major membrane protein family, the members of which are found in eukaryotes, eubacteria, and archaea. A phylogenetically old branch of the P-type ATPase family is involved in the transport of heavy-metal ions such as copper, silver, cadmium, and zinc. In humans, two homologous P-type ATPases transport copper. Mutations in the human proteins cause disorders of copper metabolism known as Wilson and Menkes diseases. E. coli possesses two genes for heavy-metal translocating P-type ATPases. We have constructed an expression system for one of them, ZntA, which encodes a 732 amino acid residue protein capable of transporting Zn(2+). A vanadate-sensitive, Zn(2+)-dependent ATPase activity is present in the membrane fraction of our expression strain. In addition to Zn(2+), the heavy-metal ions Cd(2+), Pb(2+), and Ag(+) activate the ATPase. Incubation of membranes from the expression strain with [gamma-(33)P]ATP in the presence of Zn(2+), Cd(2+), or Pb(2+) brings about phosphorylation of two membrane proteins with molecular masses of approximately 90 and 190 kDa, most likely representing the ZntA monomer and dimer, respectively. Although Cu(2+) can stimulate phosphorylation by [gamma-(33)P]ATP, it does not activate the ATPase. Cu(2+) also prevents the Zn(2+) activation of the ATPase when present in 2-fold excess over Zn(2+). Ag(+) and Cu(+) appear not to promote phosphorylation of the enzyme. To study the effects of Wilson disease mutations, we have constructed two site-directed mutants of ZntA, His475Gln and Glu470Ala, the human counterparts of which cause Wilson disease. Both mutants show a reduced metal ion stimulated ATPase activity (about 30-40% of the wild-type activity) and are phosphorylated much less efficiently by [gamma-(33)P]ATP than the wild type. In comparison to the wild type, the Glu470Ala mutant is phosphorylated more strongly by [(33)P]P(i), whereas the His475Gln mutant is phosphorylated more weakly. These results suggest that the mutation His475Gln affects the reaction with ATP and P(i) and stabilizes the enzyme in a dephosphorylated state. The Glu470Ala mutant seems to favor the E2 state. We conclude that His475 and Glu470 play important roles in the transport cycles of both the Wilson disease ATPase and ZntA.  相似文献   

20.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号