首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microstructured planar substrates have been shown to be suitable for patch clamp recording from both whole cells and isolated patches of membrane, as well as for measurements from planar lipid bilayers. Here, we further explore this technology with respect to high-resolution, low noise single-channel recording. Using solvent-free lipid bilayers from giant unilamellar vesicles obtained by electro-swelling, we recorded channels formed by the peptaibol alamethicin, a well-studied model system for voltage-dependent channels, focusing on the transient dynamics of single-channel formation upon application of a voltage step. With our setup, we were able to distinctly resolve dwell times well below 100 mus and to perform a thorough statistical analysis of alamethicin gating. Our results show good agreement with models that do not rely on the existence of non-conducting preaggregate states. Microstructured apertures in glass substrates appear promising with respect to future experiments on cellular ion channels reconstituted in suspended lipid membranes.  相似文献   

2.
The pore-forming properties of native and synthetic alamethicins were investigated in photoreceptor rod outer segments (OS) isolated from frog retina, and recorded in whole-cell configuration. The peptaibols were applied (and removed) to (from) the OS within less than 50 ms by means of a computer-controlled micro-perfusion system. Once blocked with light, the main OS endogenous conductance, the OS membrane resistance was >1 GOmega, allowing low-noise and high-resolution recordings. Currents of ca. 700 pA were recorded in symmetric K(+) (100 mM) and Ca(2+) (1 mM), upon applying 1 microM of alamethicin F50/5 or its [L-Glu(OMe)(7,18,19)] analogue to the OS membrane (clamped at -20 mV). In the latter peptide, the Gln residues at positions 7, 18, and 19 were substituted with side-chain esterified Glu residues. For both peptides, the current activated exponentially, with a delay from peptide application, and exponentially returned to zero without any delay, upon removing the peptide from the external solution. The delay as well as the activation (tau(a)) and deactivation (tau(d)) time constants of the current produced by the modified alamethicin were much slower, and the current noise was much larger, with respect to the corresponding values for alamethicin F50/5. Therefore, the above three Gln residues are not a key factor for pore formation, but the [L-Glu(OMe)(7,18,19)] analogue produces larger pores with a lower probability of formation.  相似文献   

3.
Alamethicin is supposed to form helix-bundle-type channels by inserting the N terminus into bilayer lipid membranes under sufficient voltages. The N-terminal insertion has been studied with an alamethicin dimer (di-alm) N-terminally linked by a disulfide bond and by the asymmetric addition of dithiothreitol (DTT) and tetrathionate (TT) to the membrane. When di-alm was added to the cis-side membrane, it forms long-lasting channels with the lifetime τ of about 100 ms at cis-positive voltages. The lifetime was reduced to a few milliseconds by addition of DTT to the cis-side membrane, indicating that most of the channels were formed by the monomers (alm-SH) that resulted from the cleavage of the disulfide bond in di-alm. The succeeding addition of TT to the trans-side produced channels of τ=10-20 ms besides the channels of alm-SH. The results suggested that TT reacted with the N-terminal thiol group of alm-SH located at the trans-side of the membrane to alter the lifetime. The N-terminal insertion of alamethicin helices by voltage activation, therefore, was confirmed.  相似文献   

4.
Electric features of biological membranes are major determinants of the function and physiological manifestation of membrane-penetrating peptides, and such features are prone to be modulated by the properties of the surrounding aqueous medium. In this work, we demonstrate that pH plays crucial roles in modulating electric characteristics of zwitterionic-based artificial lipid membranes. The effect of pH on electrical properties of such membranes was probed by evaluating the transport properties of embedded alamethicin oligomers over a wide range of pH values (i.e., 0.65, 2.08, 2.94, 7 and 10.1). Our data strongly support the paradigm of a pH-dependent variation of the surface and membrane dipole potential which, in conjunction with possible lateral pressure effects within the lipid membrane, lead to a non-monotonic modulation of the electrical conductance of alamethicin oligomers. As expected, pH modulation of transport properties through the alamethicin oligomer is more visible for narrower pores (that is, the 1st conductive state) with slightly better cation selectivity as compared to larger oligomers.  相似文献   

5.
Membrane incorporation and aggregation of the peptide alamethicin have been investigated as a function of lipid type. Head group and acyl chain regions both contribute to modulate alamethicin incorporation. Specifically, the peptide prefers thin membranes and saturated chains; incorporation is reduced by the presence of cholesterol. Aggregation of the peptide in the bilayer is virtually insensitive to changes in lipid composition. These findings show some analogies to results obtained with intrinsic membrane proteins and cast doubt on the use of global membrane parameters for interpreting lipid-peptide interactions.  相似文献   

6.
There is excellent agreement between the electrophysiological properties and the structure of the mitochondrial outer membrane protein, VDAC, ex vivo. However, the inference that the well-defined canonical “open” state of the VDAC pore is the normal physiological state of the channel in vivo is being challenged by several lines of evidence. Knowing the atomic structure of the detergent solubilized protein, a long sought after goal, will not be sufficient to understand the functioning of this channel protein. In addition, detailed information about VDAC’s topology in the outer membrane of intact mitochondria, and the structural changes that it undergoes in response to different stimuli in the cell will be needed to define its physiological functions and regulation.  相似文献   

7.
The bacterial mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance have functionally been reconstituted into giant unilamellar liposomes (GUVs) using an improved reconstitution method in the presence of sucrose. This method gives significant time savings (preparation times as little as 6 h) compared to the classical method of protein reconstitution which uses a dehydration/rehydration (D/R) procedure (minimum 2 days preparation time). Moreover, it represents the first highly reproducible method for functional reconstitution of MscS as well as MscS/MscL co-reconstitution. This novel procedure has the potential to be used for studies of other ion channels by liposome reconstitution.  相似文献   

8.
We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 Å at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 Å for DOPC; Alm is then mismatched with the 7 Å thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (KC) by a factor of ∼ 2 in DOPC and a factor of ∼ 10 in diC22:1PC membranes (P/L ∼ 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.  相似文献   

9.
The proteolytic fragments of OprFs of Pseudomonas aeruginosa and Pseudomonas fluorescens were identified, respectively, as the first 175 and 177 amino acids from the N-terminal domain. They induced ion channels after reincorporation into planar lipid bilayers (85 and 75 pS, respectively, in 1 M NaCl). A similar conductance value (72 pS) was found for the eight beta-strand OmpA N-terminal domain (OmpA171) of Escherichia coli. We conclude that the N-terminal domain of OprFs is sufficient to induce ion channels and the comparison with OmpA171, provides strong evidence of the existence of an eight-stranded beta-barrel in the N-terminal domain of OprFs.  相似文献   

10.
Synaptosomal membranes were fused with liposomes using the hydration technique to produce giant proteoliposomes amenable to patch clamp recordings. Single channel currents of a cationic channel with particular properties were detected. In a solution of 150 mM NaCl, the channel displayed a unit conductance of 136 pS and a mean open state lifetime of 1.1 ms. The gating of the channel was shown to be voltage as well as calcium dependent. Pharmacological studies revealed that the channel was insensitive to a variety of channel blockers, but was inactivated by ruthenium red. Presumably, this channel may play a role in regulating the evoked release of neurotransmitters. Offprint requests to: H. Breer  相似文献   

11.
Zervamicin IIB (ZER) is a 16-mer peptaibol that produces voltage-dependent conductances in artificial membranes, a property considered responsible for its antimicrobial activity to mainly Gram-positive microorganisms. In addition, ZER appears to inhibit the locomotor activity of the mouse (see elsewhere in this Issue), probably by affecting the brain. To examine whether the electrophysiological properties of the neuronal cells of the central neural system might be possibly influenced by the pore forming ZER, the present study was undertaken as a first attempt to unravel the molecular mechanism of this biological activity. To this end, membrane permeabilization of the neuron-like rat pheochromocytoma cell (PC12) by the channel-forming ZER was studied with the whole-cell patch-clamp technique, and compared with the permeabilizations of the well-known voltage-gated peptaibol alamethicin F50/5 (ALA) and the cation channel-forming peptide-antibiotic gramicidin D (GRAM). While 1 muM GRAM addition to PC12 cells kept at a membrane potential V(m)=0 mV causes an undelayed gradual increase of a leak conductance with a negative reversal potential of ca. -24 mV, ZER and ALA are ineffective at that concentration and potential. However, if ZER and ALA are added in 5-10 microM concentrations while V(m) is kept at -60 mV, they cause a sudden and strong permeabilization of the PC12 cell membrane after a delay of 1-2 min, usually leading to disintegrating morphology changes of the patched cell but not of the surrounding cells of the culture at that time scale. The zero reversal potential of the established conductance is consistent with the known aselectivity of the channels formed. This sudden permeabilization does not occur within 10-20 min at V(m)=0 mV, in accordance with the known voltage dependency of ZER and ALA channel formation in artificial lipid membranes. The permeabilizing action of these peptaibols on the culture as a whole is further supported by K(+)-release measurements from a PC12 suspension with a K(+)-selective electrode. Further analysis suggested that the permeabilizing action is associated with extra- or intracellular calcium effects, because barium inhibited the permeabilizing effects of ZER and ALA. We conclude, for the membrane of the mammalian neuron-like PC12 cell, that the permeabilizing effects of the peptides ZER and ALA are different from those of GRAM, consistent with earlier studies of these peptides in other (artificial) membrane systems. They are increased by cis-positive membrane potentials in the physiological range and may include calcium entry into the PC12 cell.  相似文献   

12.
Calcium and cyclic AMP form the cornerstones of two ancient signaling systems represented in nearly every kingdom of life. Not surprisingly, these old and ubiquitous messenger molecules have co-evolved multiple means to regulate one another. Zhang et al. describe a new twist on this theme related to the intimate union between the calcium-activated adenylyl cyclase, AC8, and the store-operated Ca2+ channel, Orai1.  相似文献   

13.
Conclusion Exciting innovations in the methodologies available for the study of ionic channels (notably in animal cells) have allowed hitherto impossible advances in the comprehension of both structure and function. In using channels like the Na channel and the AChR as examples of these strategies, we have tried to give a concise but up to date account of the current possibilities (in particular, the patch-clamp) for research in membrane physiology. That few of these techniques have been applied to plant cell membranes simply indicates the scope for advancement in the understanding of some problems fundamental to plant physiology. The mechanisms of transport involved in processes known to be important for the life of plant cells (e.g., regulation of cytoplasmic and vacuolar potential differences and pH, maintenance of vacuolar turgor pressure, accumulation of metabolites and their counterions, response to environmental stimuli) are relatively speaking, poorly characterized. In that ion fluxes through plasmalemma and tonoplast membranes are at least in part likely to be via ionic channels for all of these processes, an important step forward would be the application of patch-clamp techniques for the direct demonstration of a channel mechanism and the subsequent elucidation of their role.  相似文献   

14.
Interaction of the calcium-channel antagonist dihydropyridines (DHPs), lacidipine and nifedipine, with a phospholipid bilayer was studied using 600 ps molecular dynamic simulations. We have constructed a double layer membrane model composed of 42 dimirystoyl-phosphatidylcholine molecules. The DHP molecules locate at about 7 Å from the centre of the membrane, inducing an asymmetry in the bilayer. While lacidipine did not induce significant local perturbations as judged by the gauche-trans isomerisation rate, nifedipine significantly decreased this rate, probably by producing a local rigidity of the membrane in the vicinity of the DHP.  相似文献   

15.
16.
Using the outside-out configuration of the patch-clamp method, we studied the effect of several synthetic peptides corresponding to various segments from the N-terminal region of noxiustoxin (NTX) on single Ca2+-activated K+ (KCa) channels of small conductance obtained from cultured bovine aortic endothelial cells. These peptides induced diverse degrees of fast blockade in the endothelial KCa channel. The most effective blockers were the peptides NTX1–39 (IC50=0.5 m) and NTX1–20 comprising the first 20 amino acids from the native toxin (IC50 5 m), while less effective was the hexapeptide NTX1–6, from the first six amino acid residues of NTX (IC50 = 500 m). This was the minimum sequence required to block the channel.By testing overlapping sequences from the entire molecule, specially those corresponding to the N-terminal region of NTX, we have been able to determine their different apparent affinities for the KCa channel. Synthetic peptides from the C-terminal region produced no effect on the KCa channel at the concentrations tested (up to 1 mm). These results confirm that in the N-terminal region of the NTX is located part of the sequence that may recognize K+ channels, as we have suggested previously from in vivo experiments. The blockade induced by native NTX was poorly affected by changes in membrane potential; however, the blockage induced by synthetic peptides lacking the C-terminal region was partially released by depolarization.This study was supported by grant HL-45880 from the National Institutes of Health, and by grant 900946 from the American Heart Association to D.L.K. and Howard Hughes Medical Institute No. 75191-527104, CONACyT-Mexico No. 0018-N9105, and DGAPA-UNAM No. IN 202689 to L.D.P. This work was partially supported by a Grant-in-aid No. 92014250 from the American Heart Association to L.V.  相似文献   

17.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

18.
We have investigated the effect of high hydrostatic pressure on MscS, the bacterial mechanosensitive channel of small conductance. Pressure affected channel kinetics but not conductance. At negative pipette voltages (corresponding to membrane depolarization in the inside-out patch configuration used in our experiments) the channel exhibited a reversible reduction in activity with increasing hydrostatic pressure between 0 and 900 atm (90 MPa) at 23°C. The reduced activity was characterized by a significant reduction in the channel opening probability resulting from a shortening of the channel openings with increasing pressure. Thus high hydrostatic pressure generally favoured channel closing. Cooling the patch by approximately 10°C, intended to order the bilayer component of the patch by an amount similar to that caused by 50 MPa at 23°C, had relatively little effect. This implies that pressure does not affect channel kinetics via bilayer order. Accordingly we postulate that lateral compression of the bilayer, under high hydrostatic pressure, is responsible. These observations also have implications for our understanding of the adaptation of mechanosensitive channels in deep-sea bacteria.A Proceeding of the 28th Annual Meeting of the Australian Society for Biophysics.  相似文献   

19.
We have investigated the effect of the transmembrane domain of three viral ion channel proteins on the lipid bilayer structure by X-ray reflectivity and scattering from oriented planar bilayers. The proteins show a similar effect on the lipid bilayer structural parameters: an increase in the lipid bilayer hydrophobic core, a decrease in the amplitude of the vertical density profile and a systematic change in the ordering of the acyl chains as a function of protein-to-lipid ratio. These results are discussed in a comparative view.  相似文献   

20.
We report on a simple and high‐yield manufacturing process for silicon planar patch‐clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high‐quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high‐impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high‐fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole‐cell current recordings obtained from a voltage‐clamp stimulation protocol, and in current‐clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch‐clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high‐information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. Biotechnol. Bioeng. 2010;107:593–600. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号