首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondria of the respiratory yeast Kluyveromyces lactis are able to reoxidize cytosolic NADPH. Previously, we characterized an external alternative dehydrogenase, KlNde1p, having this activity. We now characterize the second external alternative dehydrogenase of K. lactis mitochondria, KlNde2p. We examined its role in cytosolic NADPH reoxidation by studying heterologous expression of KlNDE2 in Saccharomyces cerevisiae mutants and by constructing Deltaklnde1 and Deltaklnde2 mutants. KlNde2p uses NADH or NADPH as substrates, its activity in isolated mitochondria is not regulated by exogenously added calcium and it is not down-regulated when the cells grow in glucose versus lactate. KlNde2p shows lower affinity for NADPH than KlNde1p. Both enzymes show similar pH optimum.  相似文献   

2.
3.
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-bound (Gut2p) glycerol-3-phosphate dehydrogenases. This study addresses the physiological relevance of these mechanisms and the possible involvement of alternative routes for mitochondrial oxidation of cytosolic NADH. Aerobic, glucose-limited chemostat cultures of a gut2Delta mutant exhibited fully respiratory growth at low specific growth rates. Alcoholic fermentation set in at the same specific growth rate as in wild-type cultures (0.3 h(-1)). Apparently, the glycerol-3-phosphate shuttle is not essential for respiratory glucose dissimilation. An nde1Delta nde2Delta mutant already produced glycerol at specific growth rates of 0.10 h(-1) and above, indicating a requirement for external NADH dehydrogenase to sustain fully respiratory growth. An nde1Delta nde2Delta gut2Delta mutant produced even larger amounts of glycerol at specific growth rates ranging from 0.05 to 0.15 h(-1). Apparently, even at a low glycolytic flux, alternative mechanisms could not fully replace the external NADH dehydrogenases and glycerol-3-phosphate shuttle. However, at low dilution rates, the nde1Delta nde2Delta gut2Delta mutant did not produce ethanol. Since glycerol production could not account for all glycolytic NADH, another NADH-oxidizing system has to be present. Two alternative mechanisms for reoxidizing cytosolic NADH are discussed: (i) cytosolic production of ethanol followed by its intramitochondrial oxidation and (ii) a redox shuttle linking cytosolic NADH oxidation to the internal NADH dehydrogenase.  相似文献   

4.
In the yeast Saccharomyces cerevisiae, the two most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are external NADH dehydrogenase (Nde1p/Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p; glycerol 3-phosphate gives two electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p)-regenerating dihydroxyacetone phosphate. Both Nde1p/Nde2p and Gut2p are located in the inner mitochondrial membrane with catalytic sites facing the intermembranal space. In this study, we showed kinetic interactions between these two enzymes. First, deletion of either one of the external dehydrogenases caused an increase in the efficiency of the remaining enzyme. Second, the activation of NADH dehydrogenase inhibited the Gut2p in such a manner that, at a saturating concentration of NADH, glycerol 3-phosphate is not used as respiratory substrate. This effect was not a consequence of a direct action of NADH on Gut2p activity because both NADH dehydrogenase and its substrate were needed for Gut2p inhibition. This kinetic regulation of the activity of an enzyme as a function of the rate of another having a similar physiological function may be allowed by their association into the same supramolecular complex in the inner membrane. The physiological consequences of this regulation are discussed.  相似文献   

5.
In the yeast Saccharomyces cerevisiae, the most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are the external NADH dehydrogenases (Nde1p and Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p. Subsequently, glycerol 3-phosphate donates electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). At saturating concentrations of NADH, the activation of external NADH dehydrogenases completely inhibits glycerol 3-phosphate oxidation. Studies on the functionally isolated enzymes demonstrated that neither Nde1p nor Nde2p directly inhibits Gut2p. Thus, the inhibition of glycerol 3-phosphate oxidation may be caused by competition for the entrance of electrons into the respiratory chain. Using single deletion mutants of Nde1p or Nde2p, we have shown that glycerol 3-phosphate oxidation via Gut2p is inhibited fully when NADH is oxidized via Nde1p, whereas only 50% of glycerol 3-phosphate oxidation is inhibited when Nde2p is functioning. By comparing respiratory rates with different respiratory substrates, we show that electrons from Nde1p are favored over electrons coming from Ndip (internal NADH dehydrogenase) and that when electrons come from either Nde1p or Nde2p and succinodehydrogenase, their use by the respiratory chain is shared to a comparable extent. This suggests a very specific competition for electron entrance into the respiratory chain, which may be caused by the supramolecular organization of the respiratory chain. The physiological consequences of such regulation are discussed.  相似文献   

6.
Systematic disruption of genes encoding kinases and mitogen-activated protein kinases (MAPKs) was performed in Kluyveromyces lactis haploid cells. The mutated strains were assayed by their capacity to mate and to respond to hyperosmotic stress. The K. lactis Ste11p (KlSte11p) MAPK kinase kinase (MAPKKK) was found to act in both mating and osmoresponse pathways while the scaffold KlSte5p and the MAPK KlFus3p appeared to be specific for mating. The p21-activated kinase KlSte20p and the kinase KlSte50p participated in both pathways. Protein association experiments showed interaction of KlSte50p and KlSte20p with Gα and Gβ, respectively, the G protein subunits involved in the mating pathway. Both KlSte50p and KlSte20p also showed interaction with KlSte11p. Disruption mutants of the K. lactis PBS2 (KlPBS2) and KlHOG1 genes of the canonical osmotic response pathway resulted in mutations sensitive to high salt and high sorbitol but dispensable for mating. Mutations that eliminate the MAPKK KlSte7p activity had a strong effect on mating and also showed sensitivity to osmotic stress. Finally, we found evidence of physical interaction between KlSte7p and KlHog1p, in addition to diminished Hog1p phosphorylation after a hyperosmotic shock in cells lacking KlSte7p. This study reveals novel roles for components of transduction systems in yeast.  相似文献   

7.
An α,β-dicarbonyl reductase activity was purified from Saccharomyces cerevisiae and identified as the cytosolic enzyme d-Arabinose dehydrogenase (ARA1) by MALDI-TOF/TOF. Size exclusion chromatography analysis of recombinant Ara1p revealed that this protein formed a homodimer. Ara1p catalyzed the reduction of the reactive α,β-dicarbonyl compounds methylglyoxal, diacetyl, and pentanedione in a NADPH dependant manner. Ara1p had apparent Km values of ∼ 14 mM, 7 mM and 4 mM for methylglyoxal, diacetyl and pentanedione respectively, with corresponding turnover rates of 4.4, 6.9 and 5.9 s− 1 at pH 7.0. pH profiling showed that Ara1p had a pH optimum of 4.5 for the diacetyl reduction reaction. Ara1p also catalyzed the NADP+ dependant oxidation of acetoin; however this back reaction only occurred at alkaline pH values. That Ara1p was important for degradation of α,β-dicarbonyl substrates was further supported by the observation that ara1-Δ knockout yeast mutants exhibited a decreased growth rate phenotype in media containing diacetyl.  相似文献   

8.
Lactococcus lactis is a widely used food bacterium mainly known for its fermentation metabolism. An important, and for long time overlooked, trait of this species is its ability to perform respiratory metabolism in the presence of heme and under aerobic conditions. There is no evidence however for the presence of an alternative respiration pathway and AOX activity. In this study, a cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for alternative respiration, from a citric acid producing Aspergillus niger strain was cloned and expressed in L. lactis as a host strain. Expression of aox1 conferred on this organism cyanide-resistant and salicylhydroxamate-sensitive growth. Bioreactor cultures under fully aerobic conditions of the transformed L. lactis showed that the alternative respiratory pathway operates and improves significantly the microorganism's response to oxidizing stress conditions as it enhances biomass production, suppresses lactate formation, and leads to accumulation of large amounts of nisin.  相似文献   

9.
Oscar Juárez  Federico Martínez 《BBA》2004,1658(3):244-251
Ustilago maydis mitochondria contain the four classical components of the electron transport chain (complexes I, II, III, and IV), a glycerol phosphate dehydrogenase, and two alternative elements: an external rotenone-insensitive flavone-sensitive NADH dehydrogenase (NDH-2) and an alternative oxidase (AOX). The external NDH-2 contributes as much as complex I to the NADH-dependent respiratory activity, and is not modulated by Ca2+, a regulatory mechanism described for plant NDH-2, and presumed to be a unique characteristic of the external isozyme. The AOX accounts for the 20% residual respiratory activity after inhibition of complex IV by cyanide. This residual activity depends on growth conditions, since cells grown in the presence of cyanide or antimycin A increase its proportion to about 75% of the uninhibited rate. The effect of AMP, pyruvate and DTT on AOX was studied. The activity of AOX in U. maydis cells was sensitive to AMP but not to pyruvate, which agrees with the regulatory characteristics of a fungal AOX. Interestingly, the presence of DTT during cell permeabilisation protected the enzyme against inactivation.The pathways of quinone reduction and quinol oxidation lack an additive behavior. This is consistent with the competition of the respiratory components of each pathway for the quinol/quinone pool.  相似文献   

10.
Keeping a cytosolic redox balance is a prerequisite for living cells in order to maintain a metabolic activity and enable growth. During growth of Saccharomyces cerevisiae, an excess of NADH is generated in the cytosol. Aerobically, it has been shown that the external NADH dehydrogenase, Nde1p and Nde2p, as well as the glycerol-3-phosphate dehydrogenase shuttle, comprising the cytoplasmic glycerol-3-phosphate dehydrogenase, Gpdlp, and the mitochondrial glycerol-3-phosphate dehydrogenase, Gut2p, are the most important mechanisms for mitochondrial oxidation of cytosolic NADH. In this review we summarize the recent results showing (i) the contribution of each of the mechanisms involved in mitochondrial oxidation of the cytosolic NADH, under different physiological situations; (ii) the kinetic and structural properties of these metabolic pathways in order to channel NADH from cytosolic dehydrogenases to the inner mitochondrial membrane and (iii) the organization in supramolecular complexes and, the peculiar ensuing kinetic regulation of some of the enzymes (i.e. Gut2p inhibition by external NADH dehydrogenase activity) leading to a highly integrated functioning of enzymes having a similar physiological function. The cell physiological consequences of such an organized and regulated network are discussed.  相似文献   

11.
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.  相似文献   

12.
The Saccharomyces cerevisiae DJP1 gene encodes a cytosolic protein homologous to Escherichia coli DnaJ. DnaJ homologues act in conjunction with molecular chaperones of the Hsp70 protein family in a variety of cellular processes. Cells with a DJP1 gene deletion are viable and exhibit a novel phenotype among cytosolic J-protein mutants in that they have a specific impairment of only one organelle, the peroxisome. The phenotype was also unique among peroxisome assembly mutants: peroxisomal matrix proteins were mislocalized to the cytoplasm to a varying extent, and peroxisomal structures failed to grow to full size and exhibited a broad range of buoyant densities. Import of marker proteins for the endoplasmic reticulum, nucleus, and mitochondria was normal. Furthermore, the metabolic adaptation to a change in carbon source, a complex multistep process, was unaffected in a DJP1 gene deletion mutant. We conclude that Djp1p is specifically required for peroxisomal protein import.  相似文献   

13.
We report here initial studies on d-lactate metabolism in Jerusalem artichoke. It was found that: 1) d-lactate can be synthesized by Jerusalem artichoke by virtue of the presence of glyoxalase II, the activity of which was measured photometrically in both isolated Jerusalem artichoke mitochondria and cytosolic fraction after the addition of S-d-lactoyl-glutathione. 2) Externally added d-lactate caused oxygen consumption by mitochondria, mitochondrial membrane potential increase and proton release, in processes that were insensitive to rotenone, but inhibited by both antimycin A and cyanide. 3) d-lactate was metabolized inside mitochondria by a flavoprotein, a putative d-lactate dehydrogenase, the activity of which could be measured photometrically in mitochondria treated with Triton X-100. 4) Jerusalem artichoke mitochondria can take up externally added d-lactate by means of a d-lactate/H+ symporter investigated by measuring the rate of reduction of endogenous flavins. The action of the d-lactate translocator and of the mitochondrial d-lactate dehydrogenase could be responsible for the subsequent metabolism of d-lactate formed from methylglyoxal in the cytosol of Jerusalem artichoke.  相似文献   

14.
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis.  相似文献   

15.
16.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

17.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

18.
The reoxidation of NADH generated in reactions within the mitochondrial matrix of Saccharomyces cerevisiae is catalyzed by an NADH dehydrogenase designated Ndi1p (C. A. M. Marres, S. de Vries, and L. A. Grivell, Eur. J. Biochem. 195:857–862, 1991). Gene disruption analysis was used to examine possible metabolic functions of two proteins encoded by open reading frames having significant primary sequence similarity to Ndi1p. Disruption of the gene designated NDH1 results in a threefold reduction in total mitochondrial NADH dehydrogenase activity in cells cultivated with glucose and in a fourfold reduction in the respiration of isolated mitochondria with NADH as the substrate. Thus, Ndh1p appears to be a mitochondrial dehydrogenase capable of using exogenous NADH. Disruption of a closely related gene designated NDH2 has no effect on these properties. Growth phenotype analyses suggest that the external NADH dehydrogenase activity of Ndh1p is important for optimum cellular growth with a number of nonfermentable carbon sources, including ethanol. Codisruption of NDH1 and genes encoding malate dehydrogenases essentially eliminates growth on nonfermentable carbon sources, suggesting that the external mitochondrial NADH dehydrogenase and the malate-aspartate shuttle may both contribute to reoxidation of cytosolic NADH under these growth conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号