首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 micromol photons m(-2) s(-1) inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

2.
The Photosystem II complex (PSII) is susceptible to inactivation by strong light, and the inactivation caused by strong light is referred to as photoinactivation or photoinhibition. In photosynthetic organisms, photoinactivated PSII is rapidly repaired and the extent of photoinactivation reflects the balance between the light-induced damage (photodamage) to PSII and the repair of PSII. In this study, we examined these two processes separately and quantitatively under stress conditions in the cyanobacterium Synechocystis sp. PCC 6803. The rate of photodamage was proportional to light intensity over a range of light intensities from 0 to 2000 μE m−2 s−1, and this relationship was not affected by environmental factors, such as salt stress, oxidative stress due to H2O2, and low temperature. The rate of repair also depended on light intensity. It was high under weak light and reached a maximum of 0.1 min−1 at 300 μE m−2 s−1. By contrast to the rate of photodamage, the rate of repair was significantly reduced by the above-mentioned environmental factors. Pulse-labeling experiments with radiolabeled methionine revealed that these environmental factors inhibited the synthesis de novo of proteins. Such proteins included the D1 protein which plays an important role in the photodamage-repair cycle. These observations suggest that the repair of PSII under environmental stress might be the critical step that determines the outcome of the photodamage-repair cycle.  相似文献   

3.
The Photosystem II complex (PSII) is susceptible to inactivation by strong light, and the inactivation caused by strong light is referred to as photoinactivation or photoinhibition. In photosynthetic organisms, photoinactivated PSII is rapidly repaired and the extent of photoinactivation reflects the balance between the light-induced damage (photodamage) to PSII and the repair of PSII. In this study, we examined these two processes separately and quantitatively under stress conditions in the cyanobacterium Synechocystis sp. PCC 6803. The rate of photodamage was proportional to light intensity over a range of light intensities from 0 to 2000 microE m(-2) s(-1), and this relationship was not affected by environmental factors, such as salt stress, oxidative stress due to H2O2, and low temperature. The rate of repair also depended on light intensity. It was high under weak light and reached a maximum of 0.1 min(-1) at 300 microE m(-2) s(-1). By contrast to the rate of photodamage, the rate of repair was significantly reduced by the above-mentioned environmental factors. Pulse-labeling experiments with radiolabeled methionine revealed that these environmental factors inhibited the synthesis de novo of proteins. Such proteins included the D1 protein which plays an important role in the photodamage-repair cycle. These observations suggest that the repair of PSII under environmental stress might be the critical step that determines the outcome of the photodamage-repair cycle.  相似文献   

4.
Photoinactivation of photosystem II (PSII), the light-induced loss of ability to evolve oxygen, is an inevitable event during normal photosynthesis, exacerbated by saturating light but counteracted by repair via new protein synthesis. The photoinactivation of PSII is dependent on the dosage of light: in the absence of repair, typically one PSII is photoinactivated per 10(7) photons, although the exact quantum yield of photoinactivation is modulated by a number of factors, and decreases as fewer active PSII targets are available. PSII complexes initially appear to be photoinactivated independently; however, when less than 30% functional PSII complexes remain, they seem to be protected by strongly dissipative PSII reaction centres in several plant species examined so far, a mechanism which we term 'inactive PSII-mediated quenching'. This mechanism appears to require a pH gradient across the photosynthetic membrane for its optimal operation. The residual fraction of functional PSII complexes may, in turn, aid in the recovery of photoinactivated PSII complexes when conditions become less severe. This mechanism may be important for the photosynthetic apparatus in extreme environments such as those experienced by over-wintering evergreen plants, desert plants exposed to drought and full sunlight and shade plants in sustained sunlight.  相似文献   

5.
Irreversible photoinactivation of photosystem II (PSII) results in the degradation of the reaction center II D1 protein. In Synechocystis PCC 6714 cells, recovery of PSII activity requires illumination. The rates of photoinactivation and recovery of PSII activity in the light are similar in cells grown in minimal (MM) or glucose-containing medium (GM). Reassembly of PSII with newly synthesized proteins requires degradation of the D1 protein of the photoinactivated PSII. This process may occur in darkness in both types of cells. The degraded D1 protein is, however, only partially replaced by newly synthesized protein in MM cells in darkness while a high level of D1 protein synthesis occurs in darkness in the GM cells. The newly synthesized D1 protein in darkness appears to be assembled with other PSII proteins. However, PSII activity is not recovered in such cells. Illumination of the cells in absence but not in the presence of protein synthesis inhibitors allows recovery of PSII activity.  相似文献   

6.
H Wu  S Roy  M Alami  BR Green  DA Campbell 《Plant physiology》2012,160(1):464-476
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.  相似文献   

7.
Photosystem II (PSII) complexes, which split water into oxygen, protons and electrons in photosynthesis, require light but are also inactivated by it. Recovery of PSII from photoinactivation requires de novo protein synthesis. PSII in capsicum leaf segments were photoinactivated in the absence of chloroplast-encoded protein synthesis. At large photon exposures and despite the absence of repair, a residual fraction of PSII remained functional, being ca 0.08–0.2 depending on the ease of gas exchange in the tissue. This study revealed that the residual functional PSII was photoprotected by both (1) reaction-center quenching of excitation energy by photoinactivated PSII even when little or no PSII activity was permitted, and (2) antenna quenching, which was dependent on a trans-thylakoid pH gradient sustained mainly by linear electron transport and facilitated by the residual functional PSII complexes themselves. Significantly, little or no contribution to photoprotection of PSII was observed from cyclic electron flow around PSI. Further, the small residual functional PSII population was critical for recovery of the photoinactivated PSII complexes. Thus, photoinactivated and residual functional PSII complexes in leaves play a mutually beneficial role in each other's ultimate survival.  相似文献   

8.
Lee HY  Hong YN  Chow WS 《Planta》2001,212(3):332-342
Leaf segments from Capsicum annuum plants grown at 100 micromol photons m(-2) s(-1) (low light) or 500 micromol photons m(-2) s(-1) (high light) were illuminated at three irradiances and three temperatures for several hours. At various times, the remaining fraction (f) of functional photosystem II (PS II) complexes was measured by a chlorophyll fluorescence parameter (1/Fo -1/Fm, where Fo and Fm are the fluorescence yields corresponding to open and closed PS II traps, respectively), which was in turn calibrated by the oxygen yield per saturating single-turnover flash. During illumination of leaf segments in the presence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis, the decline of f from 1.0 to about 0.3 was mono-exponential. Thereafter, f declined much more slowly, the remaining fraction (approximately equals 0.2) being able to survive prolonged illumination. The results can be interpreted as being in support of the hypothesis that photoinactivated PS II complexes photoprotect functional neighbours (G. Oquist et al. 1992, Planta 186: 450-460), provided it is assumed that a photoinactivated PS II is initially only a weak quencher of excitation energy, but becomes a much stronger quencher during prolonged illumination when a substantial fraction of PS II complexes has also been photoinactivated. In the absence of lincomycin, photoinactivation and repair of PS II occur in parallel, allowing f to reach a steady-state value that is determined by the treatment irradiance, temperature and growth irradiance. The results obtained in the presence and absence of lincomycin are analysed according to a simple kinetic model which formally incorporates a conversion from weak to strong quenchers, yielding the rate coefficients of photoinactivation and of repair for various conditions, as well as gaining an insight into the influence off on the rate coefficient of photoinactivation. They demonstrate that the method is a convenient alternative to the use of radiolabelled amino acids for quantifying photoinactivation and repair of PS II in leaves.  相似文献   

9.
Irreversible photoinhibition of photosystem II (PSII) occurred when Synechocystis sp. PCC 6803 cells were exposed to very strong light for a prolonged period. When wild-type cells were illuminated at 20 °C for 2 h with light at an intensity of 2,500 μmol photons m−2 s−1, the oxygen-evolving activity of PSII was almost entirely and irreversibly lost, whereas the photochemical reaction center in PSII was inactivated only reversibly. The extent of irreversible photoinhibition was enhanced at lower temperatures and by the genetically engineered rigidification of membrane lipids. Western and Northern blotting demonstrated that, after cells had undergone irreversible photoinhibition, the precursor to D1 protein in PSII was synthesized but not processed properly. These observations may suggest that exposure of Synechocystis cells to strong light results in the irreversible photoinhibition of the oxygen-evolving activity of PSII via impairment of the processing of pre-D1 and that this effect of strong light is enhanced by the rigidification of membrane lipids.  相似文献   

10.
Shunichi Takahashi 《BBA》2005,1708(3):352-361
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

11.
Changing light environments force photoautotroph cells, including coral symbionts, to acclimate to maintain photosynthesis. Photosystem II (PSII) is subjected to photoinactivation at a rate proportional to the incident light, and cells must adjust their rates of protein repair to counter this photoinactivation. We examined PSII function in the coral symbiont Symbiodinium to determine the effect of photoacclimation on their capacity for PSII repair. Colonies of the coral Stylophora pistillata were collected from moderate light environments on the Lizard Island reef (Queensland, Australia) and transported to a local field station, where they were assigned to lower or higher light regimes and allowed to acclimate for 2 weeks. Following this photoacclimation period, the low-light acclimated corals showed greater symbiont density, higher chlorophyll per symbiont cell, and higher photosystem II protein than high-light acclimated corals did. Subsequently, we treated the corals with lincomycin, an inhibitor of chloroplastic protein synthesis, and exposed them to a high-light treatment to separate the effect of de novo protein synthesis in PSII repair from intrinsic susceptibility to photoinactivation. Low-light acclimated corals showed a sharp initial drop in PSII function but inhibition of PSII repair provoked only a modest additional drop in PSII function, compared to uninhibited corals. In high-light acclimated corals inhibition of PSII repair provoked a larger drop in PSII function, compared to uninhibited high-light corals. The greater lincomycin effects in the corals pre-acclimated to high-light show that high-light leads to an increased reliance on the PSII repair cycle.  相似文献   

12.
The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight.  相似文献   

13.
Utilization of absorbed light energy by photosystem (PS) II for O2 evolution depends on the light-harvesting antenna size, but the role of antenna size in the photoinactivation of PSII seems controversial. To address this controversy, pea (Pisum sativum L.) plants were grown in low (50 [mu]mol m-2 s-1) or high (650 [mu]mol m-2 s-1) light. The doubled functional antenna size of PSII in low light allows each PSII to utilize twice as many photons at given flash light energies for O2 evolution. The application of a target theory to depict the photon dose dependency of PSII photoinactivation measured by repetitive-flash O2 yield and the ratio of variable to maximal chlorophyll fluorescence indicates that photoinactivation of PSII is probably a single-hit process in which repair or photoprotective mechanisms are only slightly involved. Furthermore, the exacerbation of photoinactivation of PSII with greater antenna size under anaerobic conditions strongly indicates that photoinactivation of PSII depends on antenna size.  相似文献   

14.
Diatoms host chlorophyll a/c chloroplasts distinct from green chloroplasts. Diatoms now dominate the eukaryotic oceanic phytoplankton, in part through their exploitation of environments with variable light. We grew marine diatoms across a range of temperatures and then analyzed their PSII function and subunit turnover during an increase in light to mimic an upward mixing event. The small diatom Thalassiosira pseudonana initially responds to increased photoinactivation under blue or white light with rapid acceleration of the photosystem II (PSII) repair cycle. Increased red light provoked only modest PSII photoinactivation but triggered a rapid clearance of a subpool of PsbA. Furthermore, PsbD and PsbB content was greater than PsbA content, indicating a large pool of partly assembled PSII repair cycle intermediates lacking PsbA. The initial replacement rates for PsbD (D2) were, surprisingly, comparable to or higher than those for PsbA (D1), and even the supposedly stable PsbB (CP47) dropped rapidly upon the light shift, showing a novel aspect of rapid protein subunit turnover in the PSII repair cycle in small diatoms. Under sustained high light, T. pseudonana induces sustained nonphotochemical quenching, which correlates with stabilization of PSII function and the PsbA pool. The larger diatom Coscinodiscus radiatus showed generally similar responses but had a smaller allocation of PSII complexes relative to total protein content, with nearly equal stiochiometries of PsbA and PsbD subunits. Fast turnover of multiple PSII subunits, pools of PSII repair cycle intermediates, and photoprotective induction of nonphotochemical quenching are important interacting factors, particularly for small diatoms, to withstand and exploit high, fluctuating light.  相似文献   

15.
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO2 is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.  相似文献   

16.
Photoinactivation of photosystem II (PSII) and energy dissipation at low leaf temperatures were investigated in leaves of glasshouse-grown grapevine ( Vitis vinifera L. cv. Riesling). At low temperatures (< 15°C), photosynthetic rates of CO2 assimilation were reduced. However, despite a significant increase in the amount of light excessive to that required by photosynthesis, grapevine leaves maintained high intrinsic quantum efficiencies of PSII ( F v/ F m) and were highly resistant to photoinactivation compared to other species. Non-photochemical energy dissipation involving xanthophylls and fast D1 repair were the main protective processes reducing the 'gross' rate of photoinactivation and the 'net' rate of photoinactivation, respectively. We developed an improved method of energy dissipation analysis that revealed up to 75% of absorbed light is dissipated thermally via pH- and xanthophyll-mediated non-photochemical quenching at low temperatures (5–15°C) and moderate (800 µmol quanta m−2 s−1) light. Up to 20% of the energy flux contributing to electron transport was dissipated via photorespiration when taking into account temperature-dependent mesophyll conductance; however, this flux used in photorespiration was only a relatively small amount of the total absorbed light energy. Photoreduction of O2 at photosystem I (PSI) and subsequent superoxide detoxification (water-water cycle) was more sensitive to inhibition by low temperature than photorespiration. Therefore the water-water cycle represents a negligibly small energy sink below 15°C, irrespective of mesophyll conductance.  相似文献   

17.
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

18.
When photosynthetic organisms are exposed to abiotic stress, their photosynthetic activity is significantly depressed. In particular, photosystem II (PSII) in the photosynthetic machinery is readily inactivated under strong light and this phenomenon is referred to as photoinhibition of PSII. Other types of abiotic stress act synergistically with light stress to accelerate photoinhibition. Recent studies of photoinhibition have revealed that light stress damages PSII directly, whereas other abiotic stresses act exclusively to inhibit the repair of PSII after light-induced damage (photodamage). Such inhibition of repair is associated with suppression, by reactive oxygen species (ROS), of the synthesis of proteins de novo and, in particular, of the D1 protein, and also with the reduced efficiency of repair under stress conditions. Gene-technological improvements in the tolerance of photosynthetic organisms to various abiotic stresses have been achieved via protection of the repair system from ROS and, also, by enhancing the efficiency of repair via facilitation of the turnover of the D1 protein in PSII. In this review, we summarize the current status of research on photoinhibition as it relates to the effects of abiotic stress and we discuss successful strategies that enhance the activity of the repair machinery. In addition, we propose several potential methods for activating the repair system by gene-technological methods.  相似文献   

19.
Temperature dependence of photoinhibition and photoprotective mechanisms (10-35 degrees C) was investigated for Chenopodium album leaves grown at 25 degrees C under 500 micro mol quanta m(-2) s(-1). The fraction of active photosystem II (PSII) was determined after photoinhibitory treatment at different temperatures in the presence and absence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis. In the absence of lincomycin, leaves were more tolerant to photoinhibition at high (25-35 degrees C) than at low (11-15 degrees C) temperatures. In the presence of lincomycin, the variation in the tolerance to photoinactivation became relatively small. The rate constant of photoinactivation (k(pi)) was stable at 25-35 degrees C and increased by 50% with temperature decrease from 25 to 11 degrees C. The rate constant of recovery of inactivated PSII (k(rec)) was more sensitive to temperature; it was very low at 11 degrees C and increased by an order of magnitude at 35 degrees C. We conclude that the recovery of photoinactivated PSII plays an essential role in photoprotection at 11-35 degrees C. Partitioning of light energy to various photoprotective mechanisms was further analyzed to reveal the factor responsible for k(pi). The fraction of energy utilized in photochemistry was lower at lower temperatures. Although the fraction of heat dissipation increased with decreasing temperatures, the excess energy that is neither utilized by photochemistry nor dissipated by heat dissipation was found to be greater at lower temperatures. The k(pi) value was strongly correlated with the excess energy, suggesting that the excess energy determines the rate of photoinactivation.  相似文献   

20.
The study of turnover of two distinct forms of the photosystem II (PSII) D1 protein in cells of the cyanobacterium Synechococcus PCC 7942 showed that the 'high-light' form D1:2 is degraded significantly faster at 500 microE m(-2) s(-1) as compared with 50 microE m(-2) s(-1) while the degradation rates of the 'low-light' form D1:1 under low and high irradiance are not substantially different. Consequently, the D1:1 turnover does not match photoinactivation of PSII under increased irradiance and therefore the cells containing this D1 form exhibit a decrease in the PSII activity. Monitoring of the content of each D1 form during a recovery from growth-temperature photoinhibition showed a good correlation between the synthesis of D1:2 and restoration of the PSII activity. In contrast, when photoinhibitory treatment was conducted at low temperature, a fast recovery was not accompanied by the D1:2 accumulation. The data suggest that photoinactivation at growth temperature results in a modification of PSII that inhibits insertion of D1:1 and, therefore, for restoration of the photochemical activity in the photoinactivated PSII complexes the D1:2 synthesis is needed. This may represent the primary reason for the requirement of psbAII/psbAIII expression under increased irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号