首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (Cat Fr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

2.
Aquaporin-0 (AQP0) is the major intrinsic protein of lens fiber cells and the founder member of the water channel gene family. Here we show that disruption of the AQP0 gene by an early transposon (ETn) element results in expression of a chimeric protein, comprised of approximately 75% AQP0 and approximately 25% ETn long terminal repeat (LTR) sequence, in the cataract Fraser (CatFr) mouse lens. Immunoblot analysis showed that mutant AQP0-LTR was similar in mass to wild-type AQP0. However, immunofluorescence microscopy revealed that AQP0-LTR was localized to intracellular membranes rather than to plasma membranes of lens fiber cells. Heterozygous CatFr lenses were similar in size to wild-type but displayed abnormal regions of translucence and light scattering. Scanning electron microscopy further revealed that mature fiber cells within the core of the heterozygous CatFr lens failed to stratify into uniform, concentric growth shells, suggesting that the AQP0 water channel facilitates the development of the unique cellular architecture of the crystalline lens.  相似文献   

3.
Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.  相似文献   

4.
Hu S  Wang B  Qi Y  Lin H 《PloS one》2012,7(5):e37637
Calmodulin (CaM) directly interacts with the aquaporin 0 (AQP0) C-terminus in a calcium dependent manner to regulate the water permeability of AQP0. We previously identified a missense mutation (p.R233K) in the putative CaM binding domain of AQP0 C-terminus in a congenital cataract family. This study was aimed at exploring the potential pathogenesis of this mutation causative of cataract and mainly identifying how it influenced the binding of AQP0 to CaM. Wild type and R233K mutant AQP0 with EGFP-tag were transfected separately into Hela cells to determine the expression and subcellular localizations. The co-immunoprecipitation (CoIP) assay was used to detect the interaction between AQP0 and CaM. AQP0 C-terminus peptides were synthesized with and without R233K, and the binding abilities of these peptides to CaM were assessed using a fluorescence binding assay. Localizations of wild type and R233K mutant AQP0 were determined from EGFP fluorescence, and the chimeric proteins were both localized abundantly in the plasma membrane. Protein expression levels of the culture cells showed no significant difference between them. The results from CoIP assay implied that R233K mutant presented more weakly in association with CaM than wild type AQP0. The AQP0 C-terminal mutant peptide was found to have 2.5-fold lower binding affinity to CaM than wild type peptide. These results suggested that R233K mutation did not affect the expression, location and trafficking of the protein but did influence the interaction between AQP0 and CaM. The binding affinity of AQP0 C-terminus to CaM was significantly reduced. Due to lack of the modulation of the Ca2+-calmodulin complex, the water permeability of AQP0 was subsequently augmented, which might lead to the development of this cataract.  相似文献   

5.
Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0+/−) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0+//AQP1+/) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (Pf) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA, possibly due to alteration in RING. To our knowledge, this is the first report identifying the role of AQP0 in RING development to ward off lens SA during focusing.  相似文献   

6.
Despite sharing overall sequence and structural similarities, water channel aquaporin 0 (AQP0) transports water more slowly than other aquaporins. Using molecular dynamics simulations of AQP0 and AQP1, we find that there is a sudden decrease in the distribution profile of water density along the pore of AQP0 in the region of residue Tyr23, which significantly disrupts the single file water chain by forming hydrogen bond with permeating water molecules. Comparisons of free-energy and interaction-energy profiles for water conduction between AQP0 and AQP1 indicate that this interruption of the water chain causes a huge energy barrier opposing water translocation through AQP0. We further show that a mutation of Tyr23 to phenylalanine leads to a 2- to 4-fold enhancement in water permeability of AQP0, from (0.5 ± 0.2) × 10− 14 cm3s− 1 to (1.9 ± 0.6) × 10− 14 cm3s− 1. Therefore, Tyr23 is a dominate factor leading to the low water permeability in AQP0.  相似文献   

7.
Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fiber cell adhesion are different in AQP0−/−, and TgAQP1+/+/AQP0−/− mice that transgenically express AQP1 (TgAQP1) in fiber cells without AQP0 (AQP0−/−). In WT, lenses were transparent with ‘Y’ sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0−/− lenses were cataractous, lacked ‘Y’ sutures, ordered packing and well-defined lateral interdigitations. TgAQP1+/+/AQP0−/− lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fiber cells in WT whereas AQP0−/− and TgAQP1+/+/AQP0−/− lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0−/− and TgAQP1+/+/AQP0−/− lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1+/+/AQP0−/− mice. Fiber cell AQP0 expression is required to maintain their organization, which is a requisite for lens transparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0−/− and TgAQP1+/+/AQP0−/− lenses, fiber cell disorganization was evident.  相似文献   

8.
Aquaporin 0 (AQP0) is essential for eye lens homeostasis as is regulation of its water permeability by Ca2+, which occurs through interactions with calmodulin (CaM), but the underlying molecular mechanisms are not well understood. Here, we use molecular dynamics (MD) simulations on the microsecond timescale under an osmotic gradient to explicitly model water permeation through the AQP0 channel. To identify any structural features that are specific to water permeation through AQP0, we also performed simulations of aquaporin 1 (AQP1) and a pure mixed lipid bilayer under the same conditions. The relative single-channel water osmotic permeability coefficients (pf) calculated from all of our simulations are in reasonable agreement with experiment. Our simulations allowed us to characterize the dynamics of the key structural elements that modulate the diffusion of water single-files through the AQP0 and AQP1 pores. We find that CaM binding influences the collective dynamics of the whole AQP0 tetramer, promoting the closing of both the extracellular and intracellular gates by inducing cooperativity between neighboring subunits.  相似文献   

9.
In Xenopus oocytes, the water permeability of AQP0 (P(f)) increases with removal of external calcium, an effect that is mediated by cytoplasmic calmodulin (CaM) bound to the C terminus of AQP0. To investigate the effects of serine phosphorylation on CaM-mediated Ca(2+) regulation of P(f), we tested the effects of kinase activation, CaM inhibition, and a series of mutations in the C terminus CaM binding site. Calcium regulation of AQP0 P(f) manifests four distinct phenotypes: Group 1, with high P(f) upon removal of external Ca(2+) (wild-type, S229N, R233A, S235A, S235K, K238A, and R241E); Group 2, with high P(f) in elevated (5 mm) external Ca(2+) (S235D and R241A); Group 3, with high P(f) and no Ca(2+) regulation (S229D, S231N, S231D, S235N, and S235N/I236S); and Group 4, with low P(f) and no Ca(2+) regulation (protein kinase A and protein kinase C activators, S229D/S235D and S235N/I236S). Within each group, we tested whether CaM binding mediates the phenotype, as shown previously for wild-type AQP0. In the presence of calmidazolium, a CaM inhibitor, S235D showed high P(f) and no Ca(2+) regulation, suggesting that S235D still binds CaM. Contrarily, S229D showed a decrease in recruitment of CaM, suggesting that S229D is unable to bind CaM. Taken together, our results suggest a model in which CaM acts as an inhibitor of AQP0 P(f). CaM binding is associated with a low P(f) state, and a lack of CaM binding is associated with a high P(f) state. Pathological conditions of inappropriate phosphorylation or calcium/CaM regulation could induce P(f) changes contributing to the development of a cataract.  相似文献   

10.
Aquaporin 0 (AQP0), also known as major intrinsic protein of lens, is the most abundant membrane protein in the lens and it undergoes a host of C-terminally directed posttranslational modifications. The C-terminal region containing the major phosphorylation sites is a putative calmodulin-binding site, and calmodulin has been shown to regulate AQP0 water permeability. The purpose of the present study was to elucidate the role of AQP0 phosphorylation on calmodulin binding. AQP0 C-terminal peptides were synthesized with and without serine phosphorylation on S231 and S235, and the ability of these peptides to bind dansyl-labeled calmodulin and the calcium dependence of the interaction was assessed using a fluorescence binding assay. The AQP0 C-terminal phosphorylated peptides were found to have 20-50-fold lower affinities for calmodulin than the unphosphorylated peptide. Chemical cross-linking studies revealed specific sites of AQP0-calmodulin interaction that are significantly reduced by AQP0 phosphorylation. These data suggest that AQP0 C-terminal phosphorylation affects calmodulin binding in vivo and has a role in regulation of AQP0 function.  相似文献   

11.
Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF   总被引:4,自引:0,他引:4  
Hashido M  Ikeguchi M  Kidera A 《FEBS letters》2005,579(25):5549-5552
Molecular dynamics simulations were performed for four members of the aquaporin family (AQP1, AQPZ, AQP0, and GlpF) in the explicit membrane environment. The single-channel water permeability, pf, was evaluated to be GlpF approximately AQPZ > AQP1 > AQP0, while their relative pore sizes were GlpF > AQP1 > AQPZ > AQP0. This relation between pf and pore size indicates that water permeability was determined not only by the channel radius, but also another competing factor. Analysis of water dynamics revealed that this factor was the single-file nature of water transport.  相似文献   

12.
Cataract Tohoku (Cat(Tohm)) is a dominant cataract mutation that leads to severe degeneration of lens fiber cells. Linkage analysis showed that the Cat(Tohm) mutation is located on mouse chromosome 10, close to the gene for aquaporin-0 (Aqp0), which encodes a membrane protein that is expressed specifically in lens fiber cells. Sequence analysis of Aqp0 revealed a 12-bp deletion without any change in the reading frame, which resulted in a deletion of four amino acids within the second transmembrane region of the AQP0 protein. Targeted expression of the mutated Aqp0 caused lens opacity in transgenic mice, the pathological severity of which depended on the expression level of the transgene. The mutated AQP0 protein was localized to the intracellular and perinuclear spaces rather than to the plasma membranes of the lens fiber cells. The cataract phenotype of Cat(Tohm) is caused by a gain-of-function mutation in the mutated AQP0 protein and not by a loss-of-function mutation.  相似文献   

13.
The aquaporin7 (AQP7) water channel is known to be a member of the aquaglyceroporins, which allow the rapid transport of glycerol and water. AQP7 is abundantly present at the apical membrane of the proximal straight tubules in the kidney. In this paper, we review the physiological functions of AQP7 in the kidney. To investigate this, we generated AQP7 knockout mice. The water permeability of the proximal straight tubule brush border membrane measured by the stopped flow method was reduced in AQP7 knockout mice compared to wild-type mice (AQP7, 18.0 ± 0.4 × 10−3 cm/s vs. wild-type, 20.0 ± 0.3 × 10−3 cm/s). Although AQP7 solo knockout mice did not show a urinary concentrating defect, AQP1/AQP7 double knockout mice showed reduced urinary concentrating ability compared to AQP1 solo knockout mice, indicating that the contribution of AQP7 to water reabsorption in the proximal straight tubules is physiologically substantial. On the other hand, AQP7 knockout mice showed marked glycerol in their urine (AQP7, 1.7 ± 0.34 mg/ml vs. wild-type, 0.005 ± 0.002 mg/ml). This finding identified a novel pathway of glycerol reabsorption that occurs in the proximal straight tubules. In two mouse models of proximal straight tubule injury, the cisplatin-induced acute renal failure (ARF) model and the ischemic-reperfusion ARF model, an increase of urine glycerol was observed (pre-treatment, 0.007 ± 0.005 mg/ml; cisplatin, 0.063 ± 0.043 mg/ml; ischemia, 0.076 ± 0.02 mg/ml), suggesting that urine glycerol could be used as a new biomarker for detecting proximal straight tubule injury.  相似文献   

14.

Background

Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions.

Methods

The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2–6 (AQP0-N-del-2-6), AA235–263 (AQP0-1-234), AA239–263 (AQP0-1-238), AA244–263 (AQP0-1-243), AA247–263 (AQP0-1-246), AA250–263 (AQP0-1-249) and AA260–263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays.

Results

AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263).

Conclusions

Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens.

General significance

Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.  相似文献   

15.
A double lipid bilayer structure containing opposing tetramers of AQP0 aquaporin, in contact through extracellular face loop regions, was recently modeled using an intermediate-resolution map obtained by electron crystallographic methods. The pores of these water channels were found to be critically narrow in three regions and subsequently interpreted to be those of a closed state of the channel. The subsequent determination of a high-resolution AQP0 tetramer structure by X-ray crystallographic methods yielded a pore model featuring two of the three constrictions as noted in the EM work and water molecules within the channel pore. The extracellular-side constriction region of this AQP0 structure was significantly larger than that of the EM-based model and similar to that of the highly water permeable AQP1. The X-ray-based study of AQP0 however could not ascertain if the water molecules found in the pore were the result of water entering from one or both ends of the channel, nor whether water could freely pass through all constriction points. Additionally, this X-ray-based structure could not provide an answer to the question of whether the double lipid bilayer configuration of AQP0 could functionally maintain a water impermeable state of the channel. To address these questions we conducted molecular dynamics simulations to compare the time-dependent behavior of the AQP0 and AQP1 channels within lipid bilayers. The simulations demonstrate that AQP0, in single or double lipid bilayers, is not closed to water transport and that thermal motions of critical side-chains are sufficient to facilitate the movement of water past any of its constriction regions. These motional requirements do however lead to significant free energy barriers and help explain physiological observations that found water permeability in AQP0 to be substantially lower than in the AQP1 pore.  相似文献   

16.
17.
pH and calcium regulate the water permeability of aquaporin 0   总被引:18,自引:0,他引:18  
Aquaporins increase the water permeability in many cell types across many species. We investigated the effects of external pH and Ca(2+) on water permeability of Xenopus oocytes injected with aquaporin cRNA by measuring the rate of swelling in hypotonic solutions. Lowering pH to 6.5 increased the water permeability of aquaporin (AQP0) 3.4 +/- 0.4-fold. Diethylpyrocarbonate pretreatment increased water permeability 4.2 +/- 0.5-fold and abolished pH sensitivity, suggesting that the pH regulation is mediated by an external histidine. Lowering Ca(2+) increased water permeability 4.1 +/- 0. 4-fold. The effects of Ca(2+) and pH each required the presence of histidine 40, indicating a critical role of this amino acid in facilitating the modulation of water permeability. Clamping intracellular Ca(2+) at high or low values abolished sensitivity to external Ca(2+), suggesting that Ca(2+) acts at an internal site. Three different calmodulin inhibitors each increased AQP0 water permeability, suggesting that Ca(2+) may act through calmodulin. None of the above altered the water permeability induced by AQP1 or AQP4. Because the greatest change in AQP0 water permeability is in the normal pH range found in the lens (7.2-6.5), this paper provides evidence for regulation of an aquaporin by pH under physiological conditions.  相似文献   

18.
Transepithelial water permeability was measured in LLC-PK1 cells stably transfected with aquaporins (AQPs): AQP1, AQP2, and a chimera of AQP1 and AQP2 containing 41 amino acids of the C-terminus of AQP2. Transepithelial water fluxes (Jw) were not previously reported in cells transfected with aquaporins. Jw were now recorded each minute using a specially developed experimental device. A significant increase in Posm after forskolin (FK) plus vasopressin (VP) was found in AQP2 transfected cells (39.9 ± 8.2 vs. 12.5 ± 3.3 cm · sec−1· 10−3), but not in cells transfected with AQP1 (15.3 ± 3.6 vs. 13.4 ± 3.6 cm · sec−1· 10−3). In the case of the AQP1/2 cells (chimera) the FK plus VP induced Posm was smaller than in AQP2 cells but significantly higher than in mock cells at rest (18.1 ± 4.8 vs. 6.7 ± 1.0 cm · sec−1· 10−3). The increases in Posm values were not paralleled by increases in 14C-Mannitol permeability. HgCl2 inhibited the hydrosmotic response to FK plus VP in AQP2 transfected epithelia. Results were comparable to those observed, in parallel experiments, in a native ADH-sensitive water channel containing epithelial barrier (the toad urinary bladder). Electron microscopy showed confluent LLC-PK1 cells with microvilli at the mucosal border. The presence of spherical or elongated intracellular vacuoles was observed in AQP2 transfected cells, specially after FK plus VP stimulus and under an osmotic gradient. These results demonstrate regulated transepithelial water permeability in epithelial cells transfected with AQP2. Received: 24 June 1997/Revised: 16 September 1997  相似文献   

19.
The scope of this investigation was to understand the role of aquaporin 5 (AQP5) for maintaining lens transparency and homeostasis. Studies were conducted using lenses of wild-type (WT) and AQP5 knockout (AQP5-KO) mice. Immunofluorescent staining verified AQP5 expression in WT lens sections and lack of expression in the knockout. In vivo and ex vivo, AQP5-KO lenses resembled WT lenses in morphology and transparency. Therefore, we subjected the lenses ex vivo under normal (5.6 mM glucose) and hyperglycemic (55.6 mM glucose) conditions to test for cataract formation. Twenty-four hours after incubation in hyperglycemic culture medium, AQP5-KO lenses showed mild opacification which was accelerated several fold at 48 h; in contrast, WT lenses remained clear even after 48 h of hyperglycemic treatment. AQP5-KO lenses displayed osmotic swelling due to increase in water content. Cellular contents began to leak into the culture medium after 48 h. We reason that water influx through glucose transporters and glucose cotransporters into the cells could mainly be responsible for creating hyperglycemic osmotic swelling; absence of AQP5 in fiber cells appears to cause lack of required water efflux, challenging cell volume regulation and adding to osmotic swelling. This study reveals that AQP5 could play a critical role in lens microcirculation for maintaining transparency and homeostasis, especially by providing protection under stressful conditions. To the best of our knowledge, this is the first report providing evidence that AQP5 facilitates maintenance of lens transparency and homeostasis by regulating osmotic swelling caused by glucose transporters and cotransporters under hyperglycemic stressful conditions.  相似文献   

20.
Membrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains. Since supramolecular complexes of membrane proteins are difficult to study by conventional approaches, little is known about their composition, organization and assembly. The high signal-to-noise ratio of the images that can be obtained with an atomic force microscope (AFM) makes this instrument a powerful tool to image membrane protein complexes within native membranes. Recently, we have reported high-resolution topographs of junctional microdomains in native eye lens membranes containing two-dimensional (2D) arrays of aquaporin-0 (AQP0) surrounded by connexons. While both proteins are involved in cell adhesion, AQP0 is a specific water channel whereas connexons form cell–cell communication channels with broad substrate specificity. Here, we have performed a detailed analysis of the supramolecular organization of AQP0 tetramers and connexon hexamers in junctional microdomains in the native lens membrane. We present first structural models of these junctional microdomains, which we generated by docking atomic models of AQP0 and connexons into the AFM topographs. The AQP0 2D arrays in the native membrane show the same molecular packing of tetramers seen in highly ordered double-layered 2D crystals obtained through reconstitution of purified AQP0. In contrast, the connexons that surround the AQP0 arrays are only loosely packed. Based on our AFM observations, we propose a mechanism that may explain the supramolecular organization of AQP0 and connexons in junctional domains in native lens membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号