首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aggregation of activated platelets is considerably mediated by the autocrine action of thromboxane A2 (TxA2) which is formed in a prostaglandin endoperoxide H2 synthase-1 (PGHS-1 or COX-1)-dependent manner. The activity of PGHS-1 can be stimulated by peroxides, an effect termed "peroxide tone", that renders PGHS-1 the key regulatory enzyme in the formation of TxA2. Activated platelets release nitric oxide (*NO) and superoxide (O*2) but their interactions with the prostanoid pathway have been controversially discussed in platelet physiology and pathophysiology. The current study demonstrates that endogenously formed peroxynitrite at nanomolar concentrations, originating from the interaction of *NO and *O2, potently activated PGHS-1, which parallels TxA2 formation and aggregation in human platelets. Inhibition of the endogenous formation of either *NO or O*2 resulted in a concentration-dependent decline of PGHS-1 activity, TxA2 release, and aggregation. The concept of peroxynitrite as modulator of TxA2 formation and aggregation explains the interaction of *NO and O*2 with the PGHS pathway and suggests a mechanism by which antioxidants can regulate PGHS-1-dependent platelet aggregation. This may provide a molecular explanation for the clinically observed hyperreactivity of platelets in high-risk patients and serve as a basis for novel therapeutic interventions.  相似文献   

2.
9, 11-Epithio-11, 12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2, caused a rapid rise in cytoplasmic free Ca2+ concentration ([Ca2+]i) in human platelets as measured with the fluorescent Ca2+ indicator quin2. Concomitantly, this compound induced phosphorylation of myosin light chain which is catalyzed by Ca2+, calmodulin-dependent protein kinase. These reactions were fast enough to trigger serotonin release. 13-Azaprostanoic acid, a receptor level antagonist of thromboxane A2 inhibited STA2-induced elevation of [Ca2+]i, phosphorylation of myosin light chain and serotonin release. These results provide evidence that STA2 interacts with a thromboxane A2 receptor which leads to elevation of [Ca2+]i.  相似文献   

3.
4.
Phorbol esters, potent activators of protein kinase C (PKC), greatly enhance the release of arachidonic acid and its metabolites (TXA2, HETES, HHT) by Ca2+ ionophores in human platelets. In this paper, we report the relationship between intracellular Ca2+ mobilization and external calcium influx into platelets and the ability of PMA plus A23187 to promote thromboxane A2 (TXA2) synthesis. The enhanced levels of TXA2 due to the synergistic stimulation of the platelets with A23187 and phorbol esters are not affected significantly by the presence of external Ca2+ or the calcium-chelator EGTA. PKC inhibitors, staurosporine and sphingosine, abolished phorbol myristate acetate (PMA) potentiation of TXA2 production which strongly supports the role of PKC in the synergism. Platelet aggregation is more sensitive to PMA and external calcium than TXA2 formation. PMA increased TXA2 production as much as 4-fold at low ionophore concentrations. The A23187-induced rise in [Ca2+]i was reduced by pretreatment of human platelets with phorbol esters, both in the presence and absence of EGTA, and staurosporine reversed this inhibitory effect. These results indicate that the synergistic stimulation of TXA2 production by A23187 and phorbol esters is promoted by intracellular Ca2+ mobilization and not by external calcium influx. Our data also suggest that PKC is involved in the regulation of Ca2+ mobilization from some specific intracellular stores and that PKC may also stimulate the Ca(2+)-dependent phospholipase A2 at suboptimal Ca2+i concentrations.  相似文献   

5.
Platelet activity is controlled, in part, by cytosolic free ionized calcium concentration ([Ca++]i). Regulation of platelet thromboxane (TXB2) synthesis may be by regulation of [Ca++]i. Dietary linoleate is a regulator of TXB2 synthesis, therefore, it may act by influencing [Ca++]i. Aspirin is a regulator of TXB2 synthesis by inhibition of cyclooxygenase; ouabain and nifedipine are regulators of [Ca++]i. This study was conducted to determine whether these affectors of TXB2 synthesis and [Ca++]i cause associated responses. Male nonobese Zucker rats were fed diets supplying 30% of energy (en%) as fat. Dietary fat was a mixture of corn oil and beef tallow to provide 3.0, 4.5, 6.0, or 7.5 en% linoleic acid, with cholesterol added to provide equal cholesterol in all diets. Rats were fed for 30 days with 6 rats/diet. Isolated rat platelets were assayed for FA composition; the percentage of linoleic acid in platelet FA rose linearly with increasing dietary linoleate (r = 0.76, P less than 0.0001). Resting and thrombin-stimulated platelet [Ca++]i and TXB2 synthesis were measured in the presence or absence of extracellular calcium and aspirin, ouabain, or nifedipine. Aspirin caused reductions in both parameters; nifedipine blocked [Ca++]i, but did not affect TXB2; ouabain increased both. Changes induced by those modifiers of TXB2 and platelet [Ca++]i caused changes that were in the same direction for both. CaCl2 caused an increase in both and the [Ca++]i was correlated with the square root of the TXB2; without CaCl2 the two were negatively correlated; aspirin, ouabain, and nifedipine treatments resulted in no significant correlations. The results suggest that there is a common modifier of [Ca++]i and TXB2 synthesis.  相似文献   

6.
Platelet activation by the prostaglandin endoperoxide (PGH2)/thromboxane (Tx) A2 analog, U46619, involves stimulation of phospholipase (PL) C and an increase in intracellular calcium via distinct receptor subtypes. Agents which stimulate adenylate cyclase inhibit platelet function. We demonstrate that PGH2/TxA2 receptor desensitization is associated with enhanced stimulation of platelet cyclic AMP by the prostacyclin analog, iloprost and by forskolin. Sensitization of adenylate cyclase is mediated via the PGH2/TxA2 receptor subtype which activates PLC, as it is blocked by the specific antagonist, GR32191 (Takahara, K., Murray, R., FitzGerald, G. A., and Fitzgerald, D. J. (1990) J. Biol. Chem. 265, 6838-6844). This effect is not observed in platelets desensitized with thrombin or platelet activating factor and is not mediated by protein kinase C. Prior exposure of platelets to platelet activating factor results in much greater desensitization of PGH2/TxA2-induced aggregation (mean 64%) compared with calcium stimulation (mean 18%), consistent with selective heterologous desensitization of the PLC-linked PGH2/TxA2 receptor subtype. Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system.  相似文献   

7.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected. La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane. La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F-, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

8.
The occurrence of aspirin resistance has been inferred by the assessment of platelet aggregation ex vivo in patients with ischemic vascular syndromes taking aspirin. Since aspirin is a weak inhibitor of the inducible isoform of prostaglandin H synthase (COX-2), it was suggested that COX-2 may play a role in aspirin resistance. However the cellular source(s) of COX-2 possibly responsible for aspirin resistance remains unknown. Recently, the expression of the inducible isoform of COX-2 in circulating human platelets was reported. To investigate the possible contribution of COX-2 expression in platelet thromboxane (TX) biosynthesis, we have compared the inhibitory effects of NS-398 and aspirin, selective inhibitors of COX-2 and COX-1, respectively, on prostanoid biosynthesis by thrombin-stimulated platelets vs lipopolysaccharide (LPS)stimulated monocytes (expressing high levels of COX-2) isolated from whole blood of healthy subjects. NS-398 was 180-fold more potent in inhibiting monocyte COX-2 activity than platelet TXB2 production. In contrast, aspirin (55 micromol/L) largely suppressed platelet TXB2 production without affecting monocyte COX-2 activity. By using specific Western blot techniques, we failed to detect COX-2 in platelets while COX-1 was readily detectable. Our results argue against the involvement of COX-2 in TX biosynthesis by activated platelets and consequently dispute platelet COX-2 expression as an important mechanism of aspirin resistance.  相似文献   

9.
Imidazole and compound L8027 (selective inhibitors of thromboxane synthase) produced parallel inhibition of malonaldehyde and thromboxane B2 secretion induced by collagen or thrombin in gel-filtered suspensions of human platelets. Comparing the effects of these inhibitors and aspirin on secretion of granule constituents indicated that platelet degranulation depends mainly on thromboxane production; prostaglandin endoperoxides contributed little.  相似文献   

10.
A photoactive iodoarylazide derivative (I-APA-PhN3) of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist 13-azaprostanoic acid is evaluated. Upon photoactivation, the compound was found to inhibit specifically and irreversibly human platelet aggregation induced by the TXA2/PGH2 mimetic U46619. In receptor-binding studies using [3H]U46619, I-APA-PhN3 exhibited an IC50 of 300 nM for inhibition of U46619 binding. Photoactivation of I-APA-PhN3 resulted in an irreversible 58% reduction in specific binding of U46619. This compound and its corresponding ratio-iodinated form will prove to be useful tools for the isolation and purification of the TXA2/PGH2-binding protein in human platelets.  相似文献   

11.
12.
S-145 (5Z-7-(3-endo-phenylsulfonylamino-(2.2.1.)-bicyclohept -2-exo-yl) heptenoic acid) is a potent and selective antagonist for thromboxane A2/prostaglandin H2 receptor. Using this compound as an immobilized ligand for affinity chromatography and [3H]S-145 as a radioligand, we have purified the thromboxane A2/prostaglandin H2 receptor from the membranes of human blood platelets. The purification procedures consisted of solubilization of the receptor with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), affinity chromatographies on columns of S-145 affinity gel, wheat germ agglutinin agarose and red agarose, and repeated gel filtration high performance liquid chromatography on a TSK gel G-3000SW column. On the second gel filtration high performance liquid chromatography, the [3H]S-145 binding activity was eluted as a symmetrical peak which overlapped exactly with a peak of ultraviolet absorption at 280 nm. By these procedures, the receptor was purified about 8700-fold from the solubilized extract with a recovery of 6%. The final preparation showed a broad protein band at Mr 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and maximally bound 19.2 nmol of [3H]S-145/mg protein with a Kd of 29.8 nM. The [3H]S-145 binding to the purified receptor was specifically displaced by several thromboxane A2/prostaglandin H2 analogues.  相似文献   

13.
Two agonist-releasable Ca(2+)stores have been identified in human platelets differentiated by the distinct sensitivity of their SERCA isoforms to thapsigargin (TG) and 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). Here we have examined whether the SERCA isotypes might be involved in store-operated Ca(2+)entry (SOCE) activated by the physiological agonist thrombin in human platelets. Ca(2+)-influx evoked by thrombin (0.01 U/mL) reached a maximum after 3 min, which was consistent with the decrease in the Ca(2+)content in the stores; afterwards, the extent of SOCE decreased with no correlation with the accumulation of Ca(2+)in the stores. Inhibition of SERCA2b, by 10 nM TG, and SERCA3, with 20 microM TBHQ, individually or simultaneously, accelerated Ca(2+) store discharge and subsequently enhanced the extent of SOCE stimulated by thrombin. In addition, TG and TBHQ modified the time course of thrombin-evoked SOCE from a transient to a sustained increase in Ca(2+) influx, which reveals a negative role for SERCAs in the regulation of SOCE. This effect was consistent under conditions that inhibit Ca(2+) extrusion by PMCA or the Na(+)/Ca(2+) exchanger. Coimmunoprecipitation experiments revealed that thrombin stimulates direct interaction between SERCA2b and 3 with the hTRPC1 channel, an effect that was found to be independent of SERCA activity. In summary, our results suggest that SERCA2b and 3 modulate thrombin-stimulated SOCE probably by direct interaction with the hTRPC1 channel in human platelets.  相似文献   

14.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

15.
Two mechanisms for store-operated Ca(2+) entry (SOCE) regulated by two independent Ca(2+) stores, the dense tubular system (DTS) and the acidic stores, have been described in platelets. We have previously suggested that coupling between the type II IP(3) receptor (IP(3)RII) and hTRPC1, involving reorganization of the actin microfilaments, play an important role in SOCE. However, the involvement of the tubulin microtubules, located beneath the plasma membrane, remains unclear. Here we show that the microtubule disrupting agent colchicine reduced Ca(2+) entry stimulated by low concentrations (0.1 U/mL) of thrombin, which activates SOCE mostly by depleting acidic Ca(2+)-store. Consistently, colchicine reduced SOCE activated by 2,5 di-(tertbutyl)-1,4-hydroquinone (TBHQ), which selectively depletes the acidic Ca(2+) stores. In contrast, colchicine enhanced SOCE mediated by depletion of the DTS, induced by high concentrations of thapsigargin (TG), which depletes both the acidic Ca(2+) stores and the DTS, the major releasable Ca(2+) store in platelets. These findings were confirmed by using Sr(2+) as a surrogate for Ca(2+) entry. Colchicine attenuated the coupling between IP(3)RII and hTRPC1 stimulated by thrombin while it enhanced that evoked by TG. Paclitaxel, which induces microtubular stabilization and polymerization, exerted the opposite effects on thrombin- and TG-evoked SOCE and coupling between IP(3)RII and hTRPC1 compared with colchicine. Neither colchicine nor paclitaxel altered the ability of platelets to extrude Ca(2+). These findings suggest that tubulin microtubules play a dual role in SOCE, acting as a barrier that prevents constitutive SOCE regulated by DTS, but also supporting SOCE mediated by the acidic Ca(2+) stores.  相似文献   

16.
The prostaglandin endoperoxide PGH2, HHT, HETE, thromboxane A2, and thromboxane B2, which are all products of arachidonic acid metabolism of human platelets, were tested for their ability to modulate platelet cyclic nucleotide levels. None of the compounds tested altered the basal level of cAMP or cGMP, and only PGH2 and thromboxane A2 inhibited PGE1-stimulated cAMP accumulation. Thromboxane A2 was found to be a more potent inhibitor of PGE1-stimulated cAMP accumulation and inducer of platelet aggregation than PGH2.  相似文献   

17.
Using aequorin-loaded rat platelets stimulated with collagen, we found two phases of Ca2+ mobilization, one coinciding with a shape change and the other with aggregation, which have not yet been detected in quin2-loaded platelets. U46619, a stable analogue of prostaglandin H2, induced only a shape change and a concomitant rapid rise in the cytoplasmic ionized calcium concentration ([Cai2+]). However, upon addition of U46619 to platelets previously stimulated with collagen in the presence of indomethacin, a rapid increase in [Cai2+] and a shape change occurred, and, after about 1 min, second increase in [Cai2+] and aggregation occurred. The actions of U46619 were inhibited by an antagonist for the thromboxane A2 (TXA2) receptor. These results suggest that the collagen-induced shape change is initiated by TXA2-induced Ca2+ mobilization, and aggregation is induced by the secondary Ca2+ mobilization induced by TXA2 and the occupation of the receptor by collagen.  相似文献   

18.
A membrane bound phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) from human platelets has been purified 3500-fold, and partially characterized. Phospholipase A2 activity was assayed using [1(-14)C] oleate-labeled Escherichia coli or sonicated dispersions of synthetic phospholipids. The 2-acyl specificity of the phospholipase activity was confirmed using phosphatidylethanolamine labeled in the C-1 position as substrate. The purified enzyme was maximally active between pH 8.0 and 10.5, and had an absolute requirement for low concentrations of Ca2+. Indomethacin, but not aspirin, inhibited phospholipase A2 activity.  相似文献   

19.
Responses to vasopressin were studied in human platelets loaded with the fluorescent Ca2+ indicator, quin2. In the presence of 1 mM external Ca2+, vasopressin caused a transient rise in [Ca2+]i from the basal level near 100nM to about 700 nM; peak [Ca2+]i was reached in a few seconds and the level then declined towards resting over several minutes. In the absence of external Ca2+ there was a much smaller rise of similar time-course, suggesting that vasopressin increases [Ca2+]i mainly by stimulated-influx across the plasma membrane but also by partly releasing internal Ca2+. Inhibition of thromboxane A2 formation somewhat reduced the peak [Ca2+]i in the presence of external Ca2+, but had no effect on the response attributed to release of internal Ca2+. With external Ca2+, vasopressin stimulated shape-change, secretion and aggregation. Secretion and aggregation were decreased by about half following blockage of thromboxane production. The ability of vasopressin to induce shape-change and secretion even at near basal [Ca2+]i suggests that activators other than Ca2+ are involved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号