首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:2,自引:0,他引:2  
A technique is presented whereby a marker map can be constructed using resource family data with an entire class of missing data. The focus is on a half-sib design where there is only information on a single parent and its progeny. A Bayesian approach is utilised with solutions obtained via a Markov chain Monte Carlo algorithm. Features of the approach include the capacity to determine parameters for the ungenotyped dam population, the ability to incorporate published information and its reliability, and the production of posterior densities and the consequent deduction of a wide range of inferences. These features are demonstrated through the analysis of simulated and experimental data.  相似文献   

2.
A Bayesian CART algorithm   总被引:3,自引:0,他引:3  
  相似文献   

3.
A two-component model for counts of infectious diseases   总被引:1,自引:0,他引:1  
We propose a stochastic model for the analysis of time series of disease counts as collected in typical surveillance systems on notifiable infectious diseases. The model is based on a Poisson or negative binomial observation model with two components: a parameter-driven component relates the disease incidence to latent parameters describing endemic seasonal patterns, which are typical for infectious disease surveillance data. An observation-driven or epidemic component is modeled with an autoregression on the number of cases at the previous time points. The autoregressive parameter is allowed to change over time according to a Bayesian changepoint model with unknown number of changepoints. Parameter estimates are obtained through the Bayesian model averaging using Markov chain Monte Carlo techniques. We illustrate our approach through analysis of simulated data and real notification data obtained from the German infectious disease surveillance system, administered by the Robert Koch Institute in Berlin. Software to fit the proposed model can be obtained from http://www.statistik.lmu.de/ approximately mhofmann/twins.  相似文献   

4.
    
King R  Brooks SP  Coulson T 《Biometrics》2008,64(4):1187-1195
SUMMARY: We consider the issue of analyzing complex ecological data in the presence of covariate information and model uncertainty. Several issues can arise when analyzing such data, not least the need to take into account where there are missing covariate values. This is most acutely observed in the presence of time-varying covariates. We consider mark-recapture-recovery data, where the corresponding recapture probabilities are less than unity, so that individuals are not always observed at each capture event. This often leads to a large amount of missing time-varying individual covariate information, because the covariate cannot usually be recorded if an individual is not observed. In addition, we address the problem of model selection over these covariates with missing data. We consider a Bayesian approach, where we are able to deal with large amounts of missing data, by essentially treating the missing values as auxiliary variables. This approach also allows a quantitative comparison of different models via posterior model probabilities, obtained via the reversible jump Markov chain Monte Carlo algorithm. To demonstrate this approach we analyze data relating to Soay sheep, which pose several statistical challenges in fully describing the intricacies of the system.  相似文献   

5.
We present a statistical method, and its accompanying algorithms, for the selection of a mathematical model of the gating mechanism of an ion channel and for the estimation of the parameters of this model. The method assumes a hidden Markov model that incorporates filtering, colored noise and state-dependent white excess noise for the recorded data. The model selection and parameter estimation are performed via a Bayesian approach using Markov chain Monte Carlo. The method is illustrated by its application to single-channel recordings of the K+ outward-rectifier in barley leaf.Acknowledgement The authors thank Sake Vogelzang, Bert van Duijn and Bert de Boer for their helpful advice and useful comments and suggestions.  相似文献   

6.
7.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.  相似文献   

8.
Markov chain Monte Carlo methods for switching diffusion models   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Population-Based Reversible Jump Markov Chain Monte Carlo   总被引:2,自引:0,他引:2  
We present an extension of population-based Markov chain MonteCarlo to the transdimensional case. A major challenge is thatof simulating from high- and transdimensional target measures.In such cases, Markov chain Monte Carlo methods may not adequatelytraverse the support of the target; the simulation results willbe unreliable. We develop population methods to deal with suchproblems, and give a result proving the uniform ergodicity ofthese population algorithms, under mild assumptions. This resultis used to demonstrate the superiority, in terms of convergencerate, of a population transition kernel over a reversible jumpsampler for a Bayesian variable selection problem. We also givean example of a population algorithm for a Bayesian multivariatemixture model with an unknown number of components. This isapplied to gene expression data of 1000 data points in six dimensionsand it is demonstrated that our algorithm outperforms some competingMarkov chain samplers. In this example, we show how to combinethe methods of parallel chains (Geyer, 1991), tempering (Geyer& Thompson, 1995), snooker algorithms (Gilks et al., 1994),constrained sampling and delayed rejection (Green & Mira,2001).  相似文献   

11.
    
Mallick BK  Denison DG  Smith AF 《Biometrics》1999,55(4):1071-1077
A Bayesian multivariate adaptive regression spline fitting approach is used to model univariate and multivariate survival data with censoring. The possible models contain the proportional hazards model as a subclass and automatically detect departures from this. A reversible jump Markov chain Monte Carlo algorithm is described to obtain the estimate of the hazard function as well as the survival curve.  相似文献   

12.
    
  相似文献   

13.
14.
    
Pauler DK  Laird NM 《Biometrics》2000,56(2):464-472
In clinical trials of a self-administered drug, repeated measures of a laboratory marker, which is affected by study medication and collected in all treatment arms, can provide valuable information on population and individual summaries of compliance. In this paper, we introduce a general finite mixture of nonlinear hierarchical models that allows estimates of component membership probabilities and random effect distributions for longitudinal data arising from multiple subpopulations, such as from noncomplying and complying subgroups in clinical trials. We outline a sampling strategy for fitting these models, which consists of a sequence of Gibbs, Metropolis-Hastings, and reversible jump steps, where the latter is required for switching between component models of different dimensions. Our model is applied to identify noncomplying subjects in the placebo arm of a clinical trial assessing the effectiveness of zidovudine (AZT) in the treatment of patients with HIV, where noncompliance was defined as initiation of AZT during the trial without the investigators' knowledge. We fit a hierarchical nonlinear change-point model for increases in the marker MCV (mean corpuscular volume of erythrocytes) for subjects who noncomply and a constant mean random effects model for those who comply. As part of our fully Bayesian analysis, we assess the sensitivity of conclusions to prior and modeling assumptions and demonstrate how external information and covariates can be incorporated to distinguish subgroups.  相似文献   

15.
    
Summary The aim of this article is to develop a spatial model for multi‐subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi‐subject data, some work on spatial modeling of single‐subject data, and some recent work on spatial modeling of multi‐subject data. However, there has been no work on spatial models that explicitly account for inter‐subject variability in activation locations. In this article, we use the idea of activation centers and model the inter‐subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical framework which allows us to draw inferences at all levels: the population level, the individual level, and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question that is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass‐univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data.  相似文献   

16.
    
We propose a class of longitudinal data models with random effects that generalizes currently used models in two important ways. First, the random-effects model is a flexible mixture of multivariate normals, accommodating population heterogeneity, outliers, and nonlinearity in the regression on subject-specific covariates. Second, the model includes a hierarchical extension to allow for meta-analysis over related studies. The random-effects distributions are decomposed into one part that is common across all related studies (common measure), and one part that is specific to each study and that captures the variability intrinsic between patients within the same study. Both the common measure and the study-specific measures are parameterized as mixture-of-normals models. We carry out inference using reversible jump posterior simulation to allow a random number of terms in the mixtures. The sampler takes advantage of the small number of entertained models. The motivating application is the analysis of two studies carried out by the Cancer and Leukemia Group B (CALGB). In both studies, we record for each patient white blood cell counts (WBC) over time to characterize the toxic effects of treatment. The WBCs are modeled through a nonlinear hierarchical model that gathers the information from both studies.  相似文献   

17.
    
F. Perron  K. Mengersen 《Biometrics》2001,57(2):518-528
Nonparametric modeling is an indispensable tool in many applications and its formulation in an hierarchical Bayesian context, using the entire posterior distribution rather than particular expectations, increases its flexibility. In this article, the focus is on nonparametric estimation through a mixture of triangular distributions. The optimality of this methodology is addressed and bounds on the accuracy of this approximation are derived. Although our approach is more widely applicable, we focus for simplicity on estimation of a monotone nondecreasing regression on [0, 1] with additive error, effectively approximating the function of interest by a function having a piecewise linear derivative. Computationally accessible methods of estimation are described through an amalgamation of existing Markov chain Monte Carlo algorithms. Simulations and examples illustrate the approach.  相似文献   

18.
This paper introduces a statistical approach for high-level spatial analysis when there is little prior information about the shape or location of the region of interest in the underlying image and limited spatial resolution of the available data. Our work was motivated by a functional brain mapping technique called direct cortical electrical interference (DCEI) that gives binary observations at multiple sites throughout the brain. We estimate an underlying, binary spatial response function using a mixture of an unknown number of simple geometrical shapes (e.g. circles) with unknown centers and sizes to be estimated. Inference is made using reversible jump Markov chain Monte Carlo. The approach is illustrated with simulated examples and a real example with DCEI data.  相似文献   

19.
20.
Model-based estimation of the human health risks resulting from exposure to environmental contaminants can be an important tool for structuring public health policy. Due to uncertainties in the modeling process, the outcomes of these assessments are usually probabilistic representations of a range of possible risks. In some cases, health surveillance data are available for the assessment population over all or a subset of the risk projection period and this additional information can be used to augment the model-based estimates. We use a Bayesian approach to update model-based estimates of health risks based on available health outcome data. Updated uncertainty distributions for risk estimates are derived using Monte Carlo sampling, which allows flexibility to model realistic situations including measurement error in the observable outcomes. We illustrate the approach by using imperfect public health surveillance data on lung cancer deaths to update model-based lung cancer mortality risk estimates in a population exposed to ionizing radiation from a uranium processing facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号