首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The highly aggregated proteins precipitated by (NH4)2SO4 from the culture fluid of three strains of Streptococcus mutans gradually released less aggregated glucosyltransferase activities - dextransucrase and mutansucrase - which catalysed the synthesis of water-soluble and insoluble glucans from sucrose. Mutansucrase was eluted from a column of Sepharose 6B before dextransucrase. This activity was lost during subsequent dialysis and gel filtration, but there was a corresponding increase in dextransucrase activity which catalysed the formation of soluble glucan when incubated with sucrose alone, and insoluble glucan when incubated with sucrose and 1.55 M-(NH4)2SO4. Relative rates of synthesis of soluble and insoluble glucan in the presence of 1.55 M-(MH4)2SO4 were dependent upon the enzyme concentration: high concentrations favoured insoluble glucan synthesis. Insoluble glucans synthesized by mutansucrase or by dextransucrase in the presence of 1.55 M-(NH4)2SO4 were more sensitive to hydrolysis by mutanase than by dextranse, but soluble glucans were more extensively hydrolysed by dextranase than by mutanase. Partially purified dextransucrase sedimented through glycerol density gradients as a single symmetrical peak with an apparent molecular weight in the range 100000 to 110000. In the presence of 1.55 M-(NH4)2SO4, part of the activity sedimented rapidly as a high molecular weight aggregate. The results strongly suggest that soluble and insoluble glucans are synthesized by interconvertible forms of the same glucosyltransferase. The aggregated form, mutansucrase, preferentially catalyses (1 leads to 3)-alpha bond formation but dissociates during gel filtration to the dextransucrase form which catalyses (1 leads to 6)-alpha bond formation.  相似文献   

2.
S Sato  T Koga  T Yakushiji  S Nagasawa  M Inoue 《Microbios》1982,34(136):99-112
Production of water-insoluble glucan (ISG) from sucrose by cell-free Streptococcus mutans AHT glucosyltransferase (GTF) first rapidly increased, and then sharply declined, as the amounts of water-soluble Dextrans T20 approximately T500 present, were increased. The decline of ISG synthesis was accompanied by an increased synthesis of the water-soluble fraction (SG). Prolonged incubation, however, induced enhanced synthesis of ISG even at higher dextran concentrations. The concentration of dextran required to stimulate or suppress ISG synthesis depended on the amounts of GTF used, but the extent of the stimulation was almost identical for the same GTF/dextran ratio. Thus, ISG synthesis is stimulated by the presence of dextrans at relatively low concentrations, but retarded at higher concentrations by being shifted to SG synthesis. ISG produced in the presence of dextrans contained higher proportions of alpha-1,6 glucosidic linkage and lower molecular size fractions, and possessed lower viscosity. These ISG products did not exhibit the coalescence of two component fibrils as observed with control ISG. These changes combined may contribute to the reduction of ISG-dependent adherence to glass of S. mutans cells by the presence of soluble dextrans, irrespective of their molecular size and concentration.  相似文献   

3.
Streptococcus mutans serotype c produces several extracellular proteins which bind to affinity columns of immobilized glucans. The proteins are three distinct glucosyltransferases and another glucan-binding protein (molecular weight 74000) which is now shown to be a fructosyltransferase. This enzyme is antigenically distinct and genetically independent of two other fructosyltransferases produced by the same organism. A mutant is described which lacks the glucan binding fructosyltransferase and has defective ability to form adherent colonies in the presence of sucrose. Although the production of glucans from sucrose results in the glucan binding protein becoming bound to the bacterial surface, and hence perhaps contributing to adherence, the fructans synthesized by the enzyme do not appear to contribute to this phenomenon.  相似文献   

4.
An enzyme hydrolyzing the water-insoluble glucans produced from sucrose by Streptococcus mutans was purified from the culture concentrate of Streptomyces chartreusis strain F2 by ion-exchange chromatography on diethylaminoethyl cellulose and carboxymethyl cellulose columns and gel filtration on Bio-Gel A-1.5m. The purification achieved was 6.4-fold, with an overall yield of 27.3%. Electrophoresis of the purified enzyme protein gave a single band on a sodium dodecyl sulfate-polyacrylamide gel slab. Its molecular weight was estimated to be approximately 68,000, but there is a possibility that the native enzyme exists in an aggregated form or is an oligomer of the peptide subunits, have a molecular weight larger than 300,000. The pH optimum of the enzyme was 5.5 to 6.0, and its temperature optimum was 55 degrees C. The enzyme lost activity on heating at 65 degrees C for 10 min. The enzyme activity was completely inhibited by the presence of 1 mM Mn2+, Hg2+, Cu2+, Ag2+, or Merthiolate. The Km value for the water-insoluble glucan of S. mutans OMZ176 was an amount of glucan equivalent to 1.54 mM glucose, i.e., 0.89 mM in terms of the alpha-1,3-linked glucose residue. The purified enzyme was specific for glucans containing an alpha-1,3-glucosidic linkage as the major bond. The enzyme hydrolyzed the S. mutans water-insoluble glucans endolytically, and the products were oligosaccharides. These results indicate that the enzyme elaborated by S. chartreusis strain F2 is an endo-alpha-1,3-glucanase (EC 3.2.1.59).  相似文献   

5.
Streptococcus mutans strains Ingbritt, and its derivative B7 which had been passaged through monkeys, have been used to investigate how the synthesis of extracellular glucosyl- and fructosyltransferases is regulated. The most active enzyme from carbon-limited continuous cultures was a fructosyltransferase; enzymes catalysing the formation of water-insoluble glucans from sucrose were relatively inactive. Dextransucrase (EC 2.4.1.5), which catalyses soluble glucan synthesis, was most active in the supernatant fluid from cultures grown with excess glucose, fructose or sucrose, but full activity was detected only when the enzyme was incubated with both sucrose and dextran. Little dextransucrase activity was detected in carbon-limited cultures. It is concluded that glucosyl- and fructosyltransferases are constitutive enzymes in that they are synthesized at similar rates during growth with an excess of the substrate or of the products of the reactions which they catalyse. Although the Ingbritt strain was originally isolated from a carious lesion, it is now a poor source of glucosyltransferase activity. Glucosyltransferases were extremely active in cultures of a recent clinical isolate, strain 3209, and were apparently induced during growth with excess glucose.  相似文献   

6.
The gene encoding a glucosyltransferase which synthesized water-insoluble glucan, gtfI, previously cloned from Streptococcus sobrinus strain MFe28 (mutans serotype h) into a bacteriophage lambda vector, was subcloned into the plasmid pBR322. The recombinant plasmid was stable in Escherichia coli and gtfI was efficiently expressed. The GTF-I expressed in E. coli was compared to the corresponding enzymes in S. sobrinus strains MFe28 (serotype h), B13 (serotype d) and 6715 (serotype g) and shown to resemble them closely in molecular mass and isoelectric point. The insoluble glucan produced by GTF-I from recombinant E. coli consisted of 1,3-alpha-D-glycosyl residues (approximately 90%). An internal fragment of the gtfI gene was used as a probe in hybridization experiments to demonstrate the presence of homologous sequences in chromosomal DNA of other streptococci of the mutans group.  相似文献   

7.
Two methods were used to purify the bifunctional extracellular enzyme sucrose: (1-6)- and (1-3)-alpha-D-glucan-6-alpha-D-glucosyltransferase (EC 2.4.1.5; dextransucrase) from continuous cultures of a serotype c strain of Streptococcus mutans. The first method, based on a previously published report, involved Sepharose 6B gel filtration and DEAE cellulose anion exchange chromatography. This resulted in a dextransucrase preparation with an apparent molecular mass of 162 kDa and a specific activity of 125 mg of glucan formed from sucrose h-1 (mg of protein)-1, at 37 degrees C. It was almost homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The ratio of carbohydrate to protein was 0.14 and the recovery was 14% relative to the total glucosyltransferase activity in the original culture fluid. In the subsequently preferred method, hydroxyapatite-Ultrogel was used to purify dextransucrase with a 24% yield. The specific activity, 197 mg of glucan formed h-1 (mg of protein)-1, was the highest yet reported and this preparation contained less than 0.5 glucose-equivalent per subunit of molecular mass 162 kDa. Dextransucrase is therefore not a glycoprotein. Exogenous dextran stimulated activity, but was not essential for activity. The purified protein slowly degraded to multiple lower molecular mass forms during storage at 4 degrees C and 87% of the activity was lost after 20 days. The molecular mass of the most prominent, active degradation product was 140 kDa, similar to that of one of the multiple forms of dextransucrase detected in other laboratories. Preparations in which either the 140-kDa or the 162-kDa species predominated catalyzed the synthesis of a water-soluble glucan with sucrose alone, but catalyzed that of an insoluble glucan with sucrose and a high concentration of either (NH4)2SO4 or polyethylene glycol. The water-insoluble glucan was shown to lack sequences of 1,3-alpha-linked glycosyl residues typical of the insoluble glucan, mutan, which has been implicated in dental caries. We conclude that mutan is synthesized by the concerted action of two independent glucosyltransferases rather than by interconvertible forms of a single enzyme, as was proposed previously.  相似文献   

8.
Two glucosyltransferases from Streptococcus mutans 6715 were purified and separated. One of the glucosyltransferases synthesized an insoluble glucan, and the other, a soluble glucan. The enzymes were immobilized on Bio-Gel P-2 beads, and the mechanism of glucan synthesis was studied by pulse and chase techniques with 14C-sucrose. Label was associated with the immobilized enzymes. The label could be quantitatively released by heating at pH 2. Analysis of the labeled products from the pulse experiment showed labeled glucose and labeled glucan; the chase experiment showed labeled glucan and a significant decrease in labeled glucose. The glucans from the pulse and the chase experiments were separated from glucose by chromatography on Bio-Gel P-6. They were reduced with sodium borohydride, and the products hydrolyzed with acid. Analysis of the labeled products from the reduced and hydrolyzed, pulsed glucans showed labeled glucose and labeled glucitol; label in the glucitol was greatly decreased in the chase experiment. These experiments showed that glucose and glucan were covalently attached to the active site of the enzymes during synthesis, and that the glucose was being transferred to the reducing end of the glucan chain. A mechanism for the synthesis of the glucans is proposed in which there are two catalytic groups on each enzyme that holds glucosyl and glucanosyl units. During synthesis, the glucosyl and glucanosyl units alternate between the two sites, giving elongation of the glucans from the reducing end. The addition of increasing amounts of B-512F dextran to the insoluble-glucan-forming glucosyltransferase produced a decrease in the proportion of insoluble glucan formed and a concomitant increase in a soluble glucan. The total amount of glucan synthesized (soluble plus insoluble) was increased 1.6 times over the amount of insoluble glucan formed when no exogenous dextran was added. It is shown that the addition of B-512F dextran affects the solubility of the synthesized alpha-(1 to 3)-glucan by accepting alpha-(1-3)-glucan chains at various positions along the dextran chain, to give a soluble, graft polymer.  相似文献   

9.
The binding of radioactive glucan to Streptococcus mutans cells, which are agglutinated by dextrans, was examined. The glucan was synthesized from sucrose by extracellular glucosyltransferases from S. mutans FA-1 and was highly branched at C-3 and C-6 of D-glucose residues, containing 17% of a (1 leads to 3)inter-chain residues. Binding of glucan to whole cells of S. mutans OMZ-176, which were agglutinated by addition of glucan or Dextran T2000, was irreversible and followed saturation type kinetics; saturation was achieved at approximately 110 ng of glucan per ml. About 14 ng of glucan were bound per mg of the cells at the saturated concentration. The heated cells of this organism, however, had a relatively low ability of glucan-binding, compared with the freshly prepared and lyophilized cells. Binding to the heated cells was entirely of a non-saturation type. Binding of Dextran T2000 or T10 was determined by competition between the labeled glucan and unlabeled Dextrans for the binding site(s). Both Dextrans and glucan from S. mutans FA-1 were bound to the same site(s). Other organisms, which did not undergo glucan- and Dextran-induced agglutination, had a relatively lower ability of glucan-binding than S. mutans, which was agglutinated.  相似文献   

10.
11.
The gene encoding glucosyltransferase responsible for water-insoluble glucan synthesis (GTF-I) of Streptococcus sobrinus (formerly Streptococcus mutans 6715) was cloned, expressed, and sequenced. A gene bank from S. sobrinus 6715 DNA was constructed in vector pUC18 and screened with anti-GTF-I antibody to detect clones producing GTF-I peptide. Five immunopositive clones were isolated, all of which produced peptides that bound alpha-1,6 glucan. GTF-I activity was found in only two large peptides: one stretching over the full length of the GTF-I peptide and composed of about 1,600 amino acid residues (AB1 clone) and the other lacking about 80 N-terminal residues and about 260 C-terminal residues (AB2 clone). A deletion study of the AB2 clone indicated that specific glucan binding, which is essential for water-insoluble glucan synthesis, was lost prior to sucrase activity with an increase in deletion from the 3' end of the GTF-I gene. These results suggest that the GTF-I peptide consists of three segments: that for sucrose splitting (approximately 1,100 residues), that for glucan binding (approximately 240 residues), and that of unknown function (approximately 260 residues), in order from the N terminus. The primary structure of the GTF-I peptide, deduced by DNA sequencing of the AB1 clone, was found to be very similar to that of the homologous protein from another strain of S. sobrinus.  相似文献   

12.
The ability of several native and chemically synthesized, branched dextrans to stimulate the activity of an alpha-D-glucosyltransferase (GTF-I) of Streptococcus mutans has been compared. The enzyme catalysed the transfer of glucosyl residues from sucrose with the formation of water-insoluble (1----3)-alpha-D-glucan. The rate of this reaction was greatly increased in the presence of dextran, and the extent of stimulation was negatively correlated with the degree of branching of the added dextran. The results refute the concept that growth of water-insoluble glucan occurs from the multiple, non-reducing termini of dextran acceptors.  相似文献   

13.
The caries inhibitory effects of GOS-sugar in vitro and in rat experiments   总被引:6,自引:0,他引:6  
The caries inhibitory activity of GOS-sugar (panose- and maltose-rich sugar mixture) was examined and compared with that of sucrose, maltose, or glucose in in vitro and in vivo experiments. Streptococcus mutans MT8148R (serotype c) and Streptococcus sobrinus 6715 (g) did ferment GOS-sugar and produce acid in a similar way as with maltose and glucose. However, GOS-sugar could not be a substrate for the glucosyltransferases (GTases) of these mutans streptococci to synthesize the water-insoluble glucan. Also, it significantly inhibited not only the synthesis of water-insoluble glucan from sucrose by the crude GTases but also the sucrose-dependent adherence of these cells to a glass surface. In particular, adherence of growing cells of 6715 was markedly inhibited by the presence of GOS-sugar. GOS-sugar was found to induce significant but minimal dental caries in SPF rats infected with either MT8148R or 6715. Furthermore, the replacement of half of the dietary sucrose content with GOS-sugar resulted in a significant reduction of caries development in rats infected with strain 6715.  相似文献   

14.
A water-soluble glucan-synthesizing glucosyltransferase (GTase-S) and a water-insoluble glucan-synthesizing glucosyltransferase (GTase-I) were purified from culture supernatant of Streptococcus mutans 6715 (serotype g) by ammonium sulphate precipitation, chromatofocusing on a Polybuffer exchanger PBE 94 column, and subsequent phenyl-Sepharose CL-4B or hydroxyapatite column chromatography. The GTase-S and GTase-I activities were purified 4019- and 4714-fold, respectively, and the molecular weights were calculated to be 160000 and 165000, respectively. GTase-S had a pH optimum of 5.0, a Km of 8.8 mM for sucrose in the presence of 20 microM-dextran T10, and an isoelectric point of pH 4.3. GTase-I had two pH optima of 5.0 and 7.0, Km values of 4.9 mM (at pH 5.0) and 7.0 mM (at pH 7.0), mM (at pH 7.0), and an isoelectric point of pH 4.9. Methylation analysis indicated that the water-soluble glucan produced by GTase-S was a highly branched 1,6-alpha-linked D-glucan with 1,3-linked glucose residues, and that the water-insoluble glucan synthesized by GTase-I was composed of 1,3-alpha-linked glucose units.  相似文献   

15.
Methylation analysis of water-insoluble α-D-glucans synthesized from sucrose by culture filtrates from several strains of Streptococcus spp. has proved that all of the glucans were highly branched and that the chains contained (1→6)- and (1→3)-linked D-glucose residues not involved in branch points. Hydrolysis of the glucans with a specific endo-(1→3)-α-D-glucanase demonstrated that the majority of the (1→3)-linked glucose residues were arranged in sequences. D-Glucose was the major product of the hydrolysis, and a small proportion of nigerose was also released. The use of a specific endo-(1→6)-α-D-glucanase similarly indicated that the glucans also contained sequences of (1→6)-linked α-D-glucose residues, and that those chains were branched. Two D-glucosyltransferases (GTF-S and GTF-I), which reacted with sucrose to synthesize a soluble glucan and a water-insoluble glucan, respectively, were separated from culture filtrates of S. mutans OMZ176. The soluble glucan was characterized as a branched (1→6)-α-D-glucan, whereas the insoluble one was a relatively linear (1→3)-α-D-glucan. The hypothesis is advanced that the glucosyltransferases can transfer glucan sequences by means of acceptor reactions similar to those proposed by Robyt for dextransucrase, leading to the synthesis of a highly branched glucan containing both types of chain. The resulting structure is consistent with the evidence obtained from methylation analysis and enzymic degradations, and explains the synergy displayed when the two D-glucosyltransferases interact with sucrose. Variations in one basic structure can account for the characteristics of water-insoluble glucans from S. sanguis and S. salivarius, and for the strain-dependent diversity of S. mutans glucans.  相似文献   

16.
Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypothesis and to quantitate the ligand-binding specificities of the GbpA GBD, several fusion proteins were generated and tested by affinity electrophoresis or by precipitation of protein-ligand complexes, allowing the determination of binding constants. It was determined that the 16 YG repeats in GbpA comprise its GBD and that GbpA has a greater affinity for dextran (a water-soluble form of glucan) than for mutan (a water-insoluble form of glucan). Placement of the GBD at the carboxyl terminus was necessary for maximum glucan binding, and deletion of as few as two YG repeats from either end of the GBD reduced the affinity for dextran by over 10-fold. Interestingly, the binding constant of GbpA for dextran was 34-fold higher than that calculated for the GBDs of two S. mutans GTFs, one of which catalyzes the synthesis of water-soluble glucan and the other of which catalyzes the synthesis of water-insoluble glucan.  相似文献   

17.
Five strains of Streptococcus mutans were grown in continuous culture with either a limited supply or an excess of glucose. Proteins secreted into the extracellular fluid by strains C67-1, 3209 and K1 rapidly catalysed the synthesis of insoluble glucan from sucrose (mutansucrase activity). The culture fluid from strains Ingbritt or C67-25 catalysed the synthesis of soluble glucan (dextransucrase activity) and fructan, but little or no mutansucrase activity was detected. The strains which secreted active mutansucrase readily colonized a smooth hard surface during growth in batch culture and were more cariogenic in pathogen-free rats than those which secreted little mutansucrase activity. There was no similar correlation between fructosyltransferase, dextransucrase or total glucosyltransferase activity and either adherence or cariogenicity. We conclude that the ability to catalyse insoluble glucan synthesis is a major determinant of the cariogenicity of S. mutans strains.  相似文献   

18.
Streptococcus mutans Ingbritt (serotype c) was shown to have a significant amount of cell-associated glucosyltransferase activity which synthesizes water-insoluble glucan from sucrose. The enzyme was extracted from the washed cells with SDS, renatured with Triton X-100, adsorbed to 1,3-alpha-D-glucan gel, and then eluted with SDS. The enzyme preparation was electrophoretically homogeneous, and the specific activity was 7.3 i.u. (mg protein)-1. The enzyme had an Mr of 158,000 as determined by SDS-PAGE, and was a strongly hydrophilic protein, as judged by its amino acid composition. The enzyme gradually aggregated in the absence of SDS. The enzyme had an optimum pH of 6.5 and a Km value of 16.3 mm for sucrose. Activity was stimulated 1.7-fold by dextran T10, but was not stimulated by high concentrations of ammonium sulphate. Below a sodium phosphate buffer concentration of 50 mm, activity was reduced by 75%. This enzyme synthesized an insoluble D-glucan consisting of 76 mol% 1,3-alpha-linked glucose and 24 mol% 1,6-alpha-linked glucose.  相似文献   

19.
Cladosporium resinae (1 leads to 3)-alpha-D-glucanase has been characterized as an endoglucanase capable of completely hydrolysing insoluble (1 leads to 3)-alpha-D-glucans isolated from fungal cell-walls. D-Glucose was the major product, but a small amount of nigerose was also produced. The enzyme was specific for the hydrolysis of (1 leads to 3) bonds that occur in sequence, and nigerotetraose was the smallest substrate that was rapidly attacked. Isolated (1 leads to 3)-alpha-D-glucosidic linkages that occur in mycodextran, isolichein, dextrans, and oligosaccharides derived from dextran were not hydrolysed. Insoluble glucan synthesised from sucrose by culture filtrates of Streptococcus spp. were all hydrolysed to various limits; the range was 11-61%. A soluble glucan, synthesised by an extracellular D-glucosyltransferase of S. mutans OMZ176, was not a substrate, whereas insoluble glucans synthesised by a different D-glucosyltransferase, isolated from S. mutans strains OMZ176 and K1-R, were extensively hydrolysed (84 and 92%, respectively). It is suggested that dextranase-CB, a bacterial endo(1 leads to 6)-alpha-D-glucanase that does not release D-glucose from any substrate, could be used together with C. resinae (1 leads to 3)-alpha-D-glucanase to determine the relative proportions of (1 leads to 6)-linked to (1 leads to 3)-linked sequences of D-glucose residues in the insoluble glucans produce by oral streptococci. The simultaneous action of the two D-glucanoses was highly effective in solubilizing the glucans.  相似文献   

20.
Glucanohydrolases, especially mutanase [alpha-(1-->3) glucanase; EC 3.2.1.59] and dextranase [alpha-(1-->6) glucanase; EC 3.2.1.11], which are present in the biofilm known as dental plaque, may affect the synthesis and structure of glucans formed by glucosyltransferases (GTFs) from sucrose within dental plaque. We examined the production and the structure of glucans synthesized by GTFs B (synthesis of alpha-(1-->3)-linked glucans) or C [synthesis of alpha-(1-->6)- and alpha-(1-->3)-linked glucans] in the presence of mutanase and dextranase, alone or in combination, in solution phase and on saliva-coated hydroxyapatite beads (surface phase). The ability of Streptococcus sobrinus 6715 to adhere to the glucan, which was formed in the presence of the glucanohydrolases was also explored. The presence of mutanase and/or dextranase during the synthesis of glucans by GTF B and C altered the proportions of soluble to insoluble glucan. The presence of either dextranase or mutanase alone had a modest effect on total amount of glucan formed, especially in the surface phase; the glucanohydrolases in combination reduced the total amount of glucan. The amount of (1-->6)-linked glucan was reduced in presence of dextranase. In contrast, mutanase enhanced the formation of soluble glucan, and reduced the percentage of 3-linked glucose of GTF B and C glucans whereas dextranase was mostly without effect. Glucan formed in the presence of dextranase provided fewer binding sites for S. sobrinus; mutanase was devoid of any effect. We also noted that the GTFs bind to dextranase and mutanase. Glucanohydrolases, even in the presence of GTFs, influence glucan synthesis, linkage remodeling, and branching, which may have an impact on the formation, maturation, physical properties, and bacterial binding sites of the polysaccharide matrix in dental plaque. Our data have relevance for the formation of polysaccharide matrix of other biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号